gpu_data.cpp 4.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_GPU_DaTA_CPP_
#define DLIB_GPU_DaTA_CPP_

// Only things that require CUDA are declared in this cpp file.  Everything else is in the
// gpu_data.h header so that it can operate as "header-only" code when using just the CPU.
#ifdef DLIB_USE_CUDA

#include "gpu_data.h"
#include <iostream>
#include "cuda_utils.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------

    void gpu_data::
    wait_for_transfer_to_finish() const
    {
        if (have_active_transfer)
        {
            std::cout << "wait for cudaStreamSynchronize()" << std::endl;
            CHECK_CUDA(cudaStreamSynchronize((cudaStream_t)cuda_stream.get()));
            have_active_transfer = false;
            // Check for errors.  These calls to cudaGetLastError() are what help us find
            // out if our kernel launches have been failing.
            CHECK_CUDA(cudaGetLastError());
        }
    }

    void gpu_data::
    copy_to_device() const
    {
37
38
39
        // We want transfers to the device to always be concurrent with any device
        // computation.  So we use our non-default stream to do the transfer.
        async_copy_to_device();
40
41
42
43
44
45
46
47
        wait_for_transfer_to_finish();
    }

    void gpu_data::
    copy_to_host() const
    {
        if (!host_current)
        {
Davis King's avatar
Davis King committed
48
            wait_for_transfer_to_finish();
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            std::cout << "cudaMemcpy to host" << std::endl;
            CHECK_CUDA(cudaMemcpy(data_host.get(), data_device.get(), data_size*sizeof(float), cudaMemcpyDeviceToHost));
            host_current = true;
            // Check for errors.  These calls to cudaGetLastError() are what help us find
            // out if our kernel launches have been failing.
            CHECK_CUDA(cudaGetLastError());
        }
    }

    void gpu_data::
    async_copy_to_device() 
    {
        if (!device_current)
        {
            std::cout << "cudaMemcpyAsync to device" << std::endl;
            CHECK_CUDA(cudaMemcpyAsync(data_device.get(), data_host.get(), data_size*sizeof(float), cudaMemcpyHostToDevice, (cudaStream_t)cuda_stream.get()));
            have_active_transfer = true;
            device_current = true;
        }
    }

    void gpu_data::
    set_size(
        size_t new_size
    )
    {
        if (new_size == 0)
        {
Davis King's avatar
Davis King committed
77
            wait_for_transfer_to_finish();
78
79
80
81
82
83
84
85
            data_size = 0;
            host_current = true;
            device_current = true;
            data_host.reset();
            data_device.reset();
        }
        else if (new_size != data_size)
        {
Davis King's avatar
Davis King committed
86
            wait_for_transfer_to_finish();
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            data_size = new_size;
            host_current = true;
            device_current = true;

            try
            {
                void* data;
                CHECK_CUDA(cudaMallocHost(&data, new_size*sizeof(float)));
                // Note that we don't throw exceptions since the free calls are invariably
                // called in destructors.  They also shouldn't fail anyway unless someone
                // is resetting the GPU card in the middle of their program.
                data_host.reset((float*)data, [](float* ptr){
                    auto err = cudaFreeHost(ptr);
                    if(err!=cudaSuccess)
                        std::cerr << "cudaFreeHost() failed. Reason: " << cudaGetErrorString(err) << std::endl;
                });

                CHECK_CUDA(cudaMalloc(&data, new_size*sizeof(float)));
                data_device.reset((float*)data, [](float* ptr){
                    auto err = cudaFree(ptr);
                    if(err!=cudaSuccess)
                        std::cerr << "cudaFree() failed. Reason: " << cudaGetErrorString(err) << std::endl;
                });

                if (!cuda_stream)
                {
                    cudaStream_t cstream;
                    CHECK_CUDA(cudaStreamCreateWithFlags(&cstream, cudaStreamNonBlocking));
                    cuda_stream.reset(cstream, [](void* ptr){
                        auto err = cudaStreamDestroy((cudaStream_t)ptr);
                        if(err!=cudaSuccess)
                            std::cerr << "cudaStreamDestroy() failed. Reason: " << cudaGetErrorString(err) << std::endl;
                    });
                }

            }
            catch(...)
            {
                set_size(0);
                throw;
            }
        }
    }

// ----------------------------------------------------------------------------------------
}

#endif // DLIB_USE_CUDA

#endif // DLIB_GPU_DaTA_CPP_