global_optimization.cpp 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/global_optimization.h>
#include <dlib/matrix.h>


using namespace dlib;
using namespace std;
11
namespace py = pybind11;
12
13
14
15

// ----------------------------------------------------------------------------------------

std::vector<bool> list_to_bool_vector(
16
    const py::list& l
17
18
19
20
21
)
{
    std::vector<bool> result(len(l));
    for (long i = 0; i < result.size(); ++i)
    {
22
        result[i] = l[i].cast<bool>();
23
24
25
26
27
28
        cout << "bool val: " << result[i] << endl;
    }
    return result;
}

matrix<double,0,1> list_to_mat(
29
    const py::list& l
30
31
32
33
)
{
    matrix<double,0,1> result(len(l));
    for (long i = 0; i < result.size(); ++i)
34
        result(i) = l[i].cast<double>();
35
36
37
    return result;
}

38
py::list mat_to_list (
39
40
41
    const matrix<double,0,1>& m
)
{
42
    py::list l;
43
44
45
46
47
    for (long i = 0; i < m.size(); ++i)
        l.append(m(i));
    return l;
}

48
size_t num_function_arguments(py::object f)
49
{
50
    if (hasattr(f,"func_code"))
51
        return f.attr("func_code").attr("co_argcount").cast<std::size_t>();
52
    else
53
        return f.attr("__code__").attr("co_argcount").cast<std::size_t>();
54
55
}

56
double call_func(py::object f, const matrix<double,0,1>& args)
57
58
59
60
61
62
{
    const auto num = num_function_arguments(f);
    DLIB_CASSERT(num == args.size(), 
        "The function being optimized takes a number of arguments that doesn't agree with the size of the bounds lists you provided to find_max_global()");
    DLIB_CASSERT(0 < num && num < 15, "Functions being optimized must take between 1 and 15 scalar arguments.");

63
#define CALL_WITH_N_ARGS(N) case N: return dlib::gopt_impl::_cwv(f,args,typename make_compile_time_integer_range<N>::type()).cast<double>(); 
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    switch (num)
    {
        CALL_WITH_N_ARGS(1)
        CALL_WITH_N_ARGS(2)
        CALL_WITH_N_ARGS(3)
        CALL_WITH_N_ARGS(4)
        CALL_WITH_N_ARGS(5)
        CALL_WITH_N_ARGS(6)
        CALL_WITH_N_ARGS(7)
        CALL_WITH_N_ARGS(8)
        CALL_WITH_N_ARGS(9)
        CALL_WITH_N_ARGS(10)
        CALL_WITH_N_ARGS(11)
        CALL_WITH_N_ARGS(12)
        CALL_WITH_N_ARGS(13)
        CALL_WITH_N_ARGS(14)
        CALL_WITH_N_ARGS(15)

        default:
            DLIB_CASSERT(false, "oops");
            break;
    }
}

// ----------------------------------------------------------------------------------------

90
91
92
93
94
py::tuple py_find_max_global (
    py::object f,
    py::list bound1,
    py::list bound2,
    py::list is_integer_variable,
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    unsigned long num_function_calls,
    double solver_epsilon = 0
)
{
    DLIB_CASSERT(len(bound1) == len(bound2));
    DLIB_CASSERT(len(bound1) == len(is_integer_variable));

    auto func = [&](const matrix<double,0,1>& x)
    {
        return call_func(f, x);
    };

    auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2),
        list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
        solver_epsilon);

111
    return py::make_tuple(mat_to_list(result.x),result.y);
112
113
}

114
115
116
117
py::tuple py_find_max_global2 (
    py::object f,
    py::list bound1,
    py::list bound2,
118
119
120
121
122
123
124
125
126
127
128
129
130
    unsigned long num_function_calls,
    double solver_epsilon = 0
)
{
    DLIB_CASSERT(len(bound1) == len(bound2));

    auto func = [&](const matrix<double,0,1>& x)
    {
        return call_func(f, x);
    };

    auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);

131
    return py::make_tuple(mat_to_list(result.x),result.y);
132
133
134
135
}

// ----------------------------------------------------------------------------------------

136
137
138
139
140
py::tuple py_find_min_global (
    py::object f,
    py::list bound1,
    py::list bound2,
    py::list is_integer_variable,
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    unsigned long num_function_calls,
    double solver_epsilon = 0
)
{
    DLIB_CASSERT(len(bound1) == len(bound2));
    DLIB_CASSERT(len(bound1) == len(is_integer_variable));

    auto func = [&](const matrix<double,0,1>& x)
    {
        return call_func(f, x);
    };

    auto result = find_min_global(func, list_to_mat(bound1), list_to_mat(bound2),
        list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
        solver_epsilon);

157
    return py::make_tuple(mat_to_list(result.x),result.y);
158
159
}

160
161
162
163
py::tuple py_find_min_global2 (
    py::object f,
    py::list bound1,
    py::list bound2,
164
165
166
167
168
169
170
171
172
173
174
175
176
    unsigned long num_function_calls,
    double solver_epsilon = 0
)
{
    DLIB_CASSERT(len(bound1) == len(bound2));

    auto func = [&](const matrix<double,0,1>& x)
    {
        return call_func(f, x);
    };

    auto result = find_min_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);

177
    return py::make_tuple(mat_to_list(result.x),result.y);
178
179
180
181
}

// ----------------------------------------------------------------------------------------

182
void bind_global_optimization(py::module& m)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
{
    /*!
        requires
            - len(bound1) == len(bound2) == len(is_integer_variable)
            - for all valid i: bound1[i] != bound2[i]
            - solver_epsilon >= 0
            - f() is a real valued multi-variate function.  It must take scalar real
              numbers as its arguments and the number of arguments must be len(bound1).
        ensures
            - This function performs global optimization on the given f() function.
              The goal is to maximize the following objective function:
                 f(x)
              subject to the constraints:
                min(bound1[i],bound2[i]) <= x[i] <= max(bound1[i],bound2[i])
                if (is_integer_variable[i]) then x[i] is an integer.
            - find_max_global() runs until it has called f() num_function_calls times.
              Then it returns the best x it has found along with the corresponding output
              of f().  That is, it returns (best_x_seen,f(best_x_seen)).  Here best_x_seen
              is a list containing the best arguments to f() this function has found.
            - find_max_global() uses a global optimization method based on a combination of
              non-parametric global function modeling and quadratic trust region modeling
              to efficiently find a global maximizer.  It usually does a good job with a
              relatively small number of calls to f().  For more information on how it
              works read the documentation for dlib's global_function_search object.
              However, one notable element is the solver epsilon, which you can adjust.

              The search procedure will only attempt to find a global maximizer to at most
              solver_epsilon accuracy.  Once a local maximizer is found to that accuracy
              the search will focus entirely on finding other maxima elsewhere rather than
              on further improving the current local optima found so far.  That is, once a
              local maxima is identified to about solver_epsilon accuracy, the algorithm
              will spend all its time exploring the function to find other local maxima to
              investigate.  An epsilon of 0 means it will keep solving until it reaches
              full floating point precision.  Larger values will cause it to switch to pure
              global exploration sooner and therefore might be more effective if your
              objective function has many local maxima and you don't care about a super
              high precision solution.
            - Any variables that satisfy the following conditions are optimized on a log-scale:
                - The lower bound on the variable is > 0
                - The ratio of the upper bound to lower bound is > 1000
                - The variable is not an integer variable
              We do this because it's common to optimize machine learning models that have
              parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C
              parameter) and it's much more appropriate to optimize these kinds of
              variables on a log scale.  So we transform them by applying log() to
              them and then undo the transform via exp() before invoking the function
              being optimized.  Therefore, this transformation is invisible to the user
              supplied functions.  In most cases, it improves the efficiency of the
              optimizer.
    !*/
    {
234
    m.def("find_max_global", &py_find_max_global, 
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"requires \n\
    - len(bound1) == len(bound2) == len(is_integer_variable) \n\
    - for all valid i: bound1[i] != bound2[i] \n\
    - solver_epsilon >= 0 \n\
    - f() is a real valued multi-variate function.  It must take scalar real \n\
      numbers as its arguments and the number of arguments must be len(bound1). \n\
ensures \n\
    - This function performs global optimization on the given f() function. \n\
      The goal is to maximize the following objective function: \n\
         f(x) \n\
      subject to the constraints: \n\
        min(bound1[i],bound2[i]) <= x[i] <= max(bound1[i],bound2[i]) \n\
        if (is_integer_variable[i]) then x[i] is an integer. \n\
    - find_max_global() runs until it has called f() num_function_calls times. \n\
      Then it returns the best x it has found along with the corresponding output \n\
      of f().  That is, it returns (best_x_seen,f(best_x_seen)).  Here best_x_seen \n\
      is a list containing the best arguments to f() this function has found. \n\
    - find_max_global() uses a global optimization method based on a combination of \n\
      non-parametric global function modeling and quadratic trust region modeling \n\
      to efficiently find a global maximizer.  It usually does a good job with a \n\
      relatively small number of calls to f().  For more information on how it \n\
      works read the documentation for dlib's global_function_search object. \n\
      However, one notable element is the solver epsilon, which you can adjust. \n\
 \n\
      The search procedure will only attempt to find a global maximizer to at most \n\
      solver_epsilon accuracy.  Once a local maximizer is found to that accuracy \n\
      the search will focus entirely on finding other maxima elsewhere rather than \n\
      on further improving the current local optima found so far.  That is, once a \n\
      local maxima is identified to about solver_epsilon accuracy, the algorithm \n\
      will spend all its time exploring the function to find other local maxima to \n\
      investigate.  An epsilon of 0 means it will keep solving until it reaches \n\
      full floating point precision.  Larger values will cause it to switch to pure \n\
      global exploration sooner and therefore might be more effective if your \n\
      objective function has many local maxima and you don't care about a super \n\
      high precision solution. \n\
    - Any variables that satisfy the following conditions are optimized on a log-scale: \n\
        - The lower bound on the variable is > 0 \n\
        - The ratio of the upper bound to lower bound is > 1000 \n\
        - The variable is not an integer variable \n\
      We do this because it's common to optimize machine learning models that have \n\
      parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C \n\
      parameter) and it's much more appropriate to optimize these kinds of \n\
      variables on a log scale.  So we transform them by applying log() to \n\
      them and then undo the transform via exp() before invoking the function \n\
      being optimized.  Therefore, this transformation is invisible to the user \n\
      supplied functions.  In most cases, it improves the efficiency of the \n\
      optimizer." 
        , 
283
	py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer_variable"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
284
285
286
287
    );
    }

    {
288
    m.def("find_max_global", &py_find_max_global2, 
289
        "This function simply calls the other version of find_max_global() with is_integer_variable set to False for all variables.", 
290
	py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
291
292
    );
    }
293
294
295
296



    {
297
    m.def("find_min_global", &py_find_min_global, 
298
299
      "This function is just like find_max_global(), except it performs minimization rather than maximization." 
        , 
300
	py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer_variable"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
301
302
303
304
    );
    }

    {
305
    m.def("find_min_global", &py_find_min_global2, 
306
        "This function simply calls the other version of find_min_global() with is_integer_variable set to False for all variables.", 
307
	py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
308
309
310
    );
    }

311
312
}