decision_functions.cpp 11.7 KB
Newer Older
1
2
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
3

4
#include <dlib/python.h>
5
#include "testing_results.h"
6
7
8
9
10
#include <dlib/svm.h>

using namespace dlib;
using namespace std;

11
namespace py = pybind11;
12

13
14
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
15
16
17
18
19
20
21

template <typename decision_function>
double predict (
    const decision_function& df,
    const typename decision_function::kernel_type::sample_type& samp
)
{
22
    typedef typename decision_function::kernel_type::sample_type T;
23
24
25
26
    if (df.basis_vectors.size() == 0)
    {
        return 0;
    }
27
    else if (is_matrix<T>::value && df.basis_vectors(0).size() != samp.size())
28
29
    {
        std::ostringstream sout;
Davis King's avatar
Davis King committed
30
31
        sout << "Input vector should have " << df.basis_vectors(0).size() 
             << " dimensions, not " << samp.size() << ".";
32
33
        PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
        throw py::error_already_set();
34
35
36
37
38
39
    }
    return df(samp);
}

template <typename kernel_type>
void add_df (
40
    py::module& m,
41
42
43
44
    const std::string name
)
{
    typedef decision_function<kernel_type> df_type;
45
    py::class_<df_type>(m, name.c_str())
46
        .def("__call__", &predict<df_type>)
47
        .def(py::pickle(&getstate<df_type>, &setstate<df_type>));
48
49
}

Davis King's avatar
Davis King committed
50
51
52
53
54
55
56
template <typename df_type>
typename df_type::sample_type get_weights(
    const df_type& df
)
{
    if (df.basis_vectors.size() == 0)
    {
57
58
        PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
        throw py::error_already_set();
Davis King's avatar
Davis King committed
59
60
61
62
63
64
65
66
67
68
69
70
    }
    df_type temp = simplify_linear_decision_function(df);
    return temp.basis_vectors(0);
}

template <typename df_type>
typename df_type::scalar_type get_bias(
    const df_type& df
)
{
    if (df.basis_vectors.size() == 0)
    {
71
72
        PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
        throw py::error_already_set();
Davis King's avatar
Davis King committed
73
74
75
76
    }
    return df.b;
}

77
78
79
80
81
82
83
84
template <typename df_type>
void set_bias(
    df_type& df,
    double b
)
{
    if (df.basis_vectors.size() == 0)
    {
85
86
        PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
        throw py::error_already_set();
87
88
89
90
    }
    df.b = b;
}

Davis King's avatar
Davis King committed
91
92
template <typename kernel_type>
void add_linear_df (
93
    py::module &m,
Davis King's avatar
Davis King committed
94
95
96
97
    const std::string name
)
{
    typedef decision_function<kernel_type> df_type;
98
    py::class_<df_type>(m, name.c_str())
99
        .def("__call__", predict<df_type>)
100
101
102
        .def_property_readonly("weights", &get_weights<df_type>)
        .def_property("bias", get_bias<df_type>, set_bias<df_type>)
        .def(py::pickle(&getstate<df_type>, &setstate<df_type>));
Davis King's avatar
Davis King committed
103
104
}

105
106
107
108
109
110
111
112
113
114
115
116
117
118
// ----------------------------------------------------------------------------------------

std::string binary_test__str__(const binary_test& item)
{
    std::ostringstream sout;
    sout << "class1_accuracy: "<< item.class1_accuracy << "  class2_accuracy: "<< item.class2_accuracy; 
    return sout.str();
}
std::string binary_test__repr__(const binary_test& item) { return "< " + binary_test__str__(item) + " >";}

std::string regression_test__str__(const regression_test& item)
{
    std::ostringstream sout;
    sout << "mean_squared_error: "<< item.mean_squared_error << "  R_squared: "<< item.R_squared; 
119
    sout << "  mean_average_error: "<< item.mean_average_error << "  mean_error_stddev: "<< item.mean_error_stddev; 
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    return sout.str();
}
std::string regression_test__repr__(const regression_test& item) { return "< " + regression_test__str__(item) + " >";}

std::string ranking_test__str__(const ranking_test& item)
{
    std::ostringstream sout;
    sout << "ranking_accuracy: "<< item.ranking_accuracy << "  mean_ap: "<< item.mean_ap; 
    return sout.str();
}
std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranking_test__str__(item) + " >";}

// ----------------------------------------------------------------------------------------

template <typename K>
binary_test  _test_binary_decision_function (
    const decision_function<K>& dec_funct,
    const std::vector<typename K::sample_type>& x_test,
    const std::vector<double>& y_test
) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }

template <typename K>
regression_test _test_regression_function (
    const decision_function<K>& reg_funct,
    const std::vector<typename K::sample_type>& x_test,
    const std::vector<double>& y_test
) { return regression_test(test_regression_function(reg_funct, x_test, y_test)); }

template < typename K >
ranking_test _test_ranking_function1 (
    const decision_function<K>& funct,
    const std::vector<ranking_pair<typename K::sample_type> >& samples
) { return ranking_test(test_ranking_function(funct, samples)); }

template < typename K >
ranking_test _test_ranking_function2 (
    const decision_function<K>& funct,
    const ranking_pair<typename K::sample_type>& sample
) { return ranking_test(test_ranking_function(funct, sample)); }


161
void bind_decision_functions(py::module &m)
162
{
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    add_linear_df<linear_kernel<sample_type> >(m, "_decision_function_linear");
    add_linear_df<sparse_linear_kernel<sparse_vect> >(m, "_decision_function_sparse_linear");

    add_df<histogram_intersection_kernel<sample_type> >(m, "_decision_function_histogram_intersection");
    add_df<sparse_histogram_intersection_kernel<sparse_vect> >(m, "_decision_function_sparse_histogram_intersection");

    add_df<polynomial_kernel<sample_type> >(m, "_decision_function_polynomial");
    add_df<sparse_polynomial_kernel<sparse_vect> >(m, "_decision_function_sparse_polynomial");

    add_df<radial_basis_kernel<sample_type> >(m, "_decision_function_radial_basis");
    add_df<sparse_radial_basis_kernel<sparse_vect> >(m, "_decision_function_sparse_radial_basis");

    add_df<sigmoid_kernel<sample_type> >(m, "_decision_function_sigmoid");
    add_df<sparse_sigmoid_kernel<sparse_vect> >(m, "_decision_function_sparse_sigmoid");


    m.def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));
    m.def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("labels"));

    m.def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));
    m.def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"), py::arg("targets"));

    m.def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
        py::arg("function"), py::arg("samples"));
    m.def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
        py::arg("function"), py::arg("samples"));
    m.def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
        py::arg("function"), py::arg("sample"));
    m.def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
        py::arg("function"), py::arg("sample"));


    py::class_<binary_test>(m, "_binary_test")
232
233
        .def("__str__", binary_test__str__)
        .def("__repr__", binary_test__repr__)
234
        .def_readwrite("class1_accuracy", &binary_test::class1_accuracy,
Davis King's avatar
Davis King committed
235
            "A value between 0 and 1, measures accuracy on the +1 class.")
236
        .def_readwrite("class2_accuracy", &binary_test::class2_accuracy,
Davis King's avatar
Davis King committed
237
            "A value between 0 and 1, measures accuracy on the -1 class.");
238

239
    py::class_<ranking_test>(m, "_ranking_test")
240
241
        .def("__str__", ranking_test__str__)
        .def("__repr__", ranking_test__repr__)
242
        .def_readwrite("ranking_accuracy", &ranking_test::ranking_accuracy,
Davis King's avatar
Davis King committed
243
            "A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.")
244
        .def_readwrite("mean_ap", &ranking_test::mean_ap,
Davis King's avatar
Davis King committed
245
            "A value between 0 and 1, measures the mean average precision of the ranking.");
246

247
    py::class_<regression_test>(m, "_regression_test")
248
249
        .def("__str__", regression_test__str__)
        .def("__repr__", regression_test__repr__)
250
        .def_readwrite("mean_average_error", &regression_test::mean_average_error,
251
            "The mean average error of a regression function on a dataset.")
252
        .def_readwrite("mean_error_stddev", &regression_test::mean_error_stddev,
253
            "The standard deviation of the absolute value of the error of a regression function on a dataset.")
254
        .def_readwrite("mean_squared_error", &regression_test::mean_squared_error,
Davis King's avatar
Davis King committed
255
            "The mean squared error of a regression function on a dataset.")
256
        .def_readwrite("R_squared", &regression_test::R_squared,
Davis King's avatar
Davis King committed
257
258
            "A value between 0 and 1, measures the squared correlation between the output of a \n"
            "regression function and the target values.");
259
260
261
262
}