tensor.h 14.7 KB
Newer Older
1
2
3
4
5
6
7
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNn_TENSOR_H_
#define DLIB_DNn_TENSOR_H_

#include <memory>
#include <cstring>
Davis King's avatar
Davis King committed
8
#include "../matrix.h"
Davis King's avatar
Davis King committed
9
#include "cudnn_dlibapi.h"
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class gpu_data 
    {
        /*!
            CONVENTION
                - if (size() != 0) then
                    - data_host == a pointer to size() floats in CPU memory.
                - if (data_device) then 
                    - data_device == a pointer to size() floats in device memory.


                - We use the host_current and device_current bools to keep track of which
                  copy of the data (or both) are most current.  e.g. if the CPU has
                  modified the tensor and it hasn't been copied to the device yet then
                  host_current==true and device_current == false.

        !*/
    public:

        gpu_data(
        ) : data_size(0), host_current(true), device_current(false)
        {
        }

        // Not copyable
        gpu_data(const gpu_data&) = delete;
        gpu_data& operator=(const gpu_data&) = delete;

        // but is movable
        gpu_data(gpu_data&&) = default;
        gpu_data& operator=(gpu_data&&) = default;

        void set_size(size_t new_size)
        {
            if (new_size == 0)
            {
                data_size = 0;
                host_current = true;
                device_current = false;
                data_host.reset();
                data_device.reset();
            }
            else if (new_size != data_size)
            {
                data_size = new_size;
                host_current = true;
                device_current = false;
                data_host.reset(new float[new_size]);
                data_device.reset();
            }
        }

        void async_copy_to_device() 
        {
Davis King's avatar
Davis King committed
69
#ifdef DLIB_USE_CUDA
70
            // TODO
Davis King's avatar
Davis King committed
71
#endif
72
73
74
75
        }

        void async_copy_to_host() 
        {
Davis King's avatar
Davis King committed
76
#ifdef DLIB_USE_CUDA
77
            // TODO
Davis King's avatar
Davis King committed
78
#endif
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        }

        const float* host() const 
        { 
            copy_to_host();
            return data_host.get(); 
        }

        float* host() 
        {
            copy_to_host();
            device_current = false;
            return data_host.get(); 
        }

        const float* device() const 
        { 
Davis King's avatar
Davis King committed
96
97
98
#ifndef DLIB_USE_CUDA
            DLIB_CASSERT(false, "CUDA NOT ENABLED");
#endif
99
100
101
102
103
104
            copy_to_device();
            return data_device.get(); 
        }

        float* device() 
        {
Davis King's avatar
Davis King committed
105
106
107
#ifndef DLIB_USE_CUDA
            DLIB_CASSERT(false, "CUDA NOT ENABLED");
#endif
108
109
110
111
112
113
114
            copy_to_device();
            host_current = false;
            return data_device.get(); 
        }

        size_t size() const { return data_size; }

115

116
117
118
119
120
121
    private:

        void copy_to_device() const
        {
            if (!device_current)
            {
Davis King's avatar
Davis King committed
122
#ifdef DLIB_USE_CUDA
123
                // TODO, cudamemcpy()
Davis King's avatar
Davis King committed
124
#endif
125
126
127
128
129
130
131
132
                device_current = true;
            }
        }

        void copy_to_host() const
        {
            if (!host_current)
            {
Davis King's avatar
Davis King committed
133
#ifdef DLIB_USE_CUDA
134
                // TODO, cudamemcpy()
Davis King's avatar
Davis King committed
135
#endif
136
137
138
139
140
141
142
143
144
145
146
147
                host_current = true;
            }
        }

        size_t data_size;
        mutable bool host_current;
        mutable bool device_current;

        std::unique_ptr<float[]> data_host;
        std::unique_ptr<float[]> data_device;
    };

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    inline void serialize(const gpu_data& item, std::ostream& out)
    {
        int version = 1;
        serialize(item.size(), out);
        auto data = item.host();
        for (size_t i = 0; i < item.size(); ++i)
            serialize(data[i], out);
    }

    inline void deserialize(gpu_data& item, std::istream& in)
    {
        int version;
        deserialize(version, in);
        if (version != 1)
            throw serialization_error("Unexpected version found while deserializing dlib::gpu_data.");
        size_t s;
        deserialize(s, in);
        item.set_size(s);
        auto data = item.host();
        for (size_t i = 0; i < item.size(); ++i)
            deserialize(data[i], in);
    }


172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// ----------------------------------------------------------------------------------------

    class tensor
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
        !*/

    public:

        tensor (
        ) : 
            m_n(0), m_nr(0), m_nc(0), m_k(0)
        {
        }

        inline virtual ~tensor() = 0;

        long num_samples() const { return m_n; }
        long nr() const { return m_nr; }
        long nc() const { return m_nc; }
        long k() const { return m_k; }
        size_t size() const { return data.size(); }

        void async_copy_to_host() 
        {
            data.async_copy_to_host();
        }

        void async_copy_to_device() 
        {
            data.async_copy_to_device();
        }
        /*!
            ensures
                - begin asynchronously copying this tensor to the GPU.

                NOTE that the "get device pointer" routine in this class
                will have to do some kind of synchronization that ensures
                the copy is finished.
        !*/

        const float* host() const { return data.host(); }
        float*       host()       { return data.host(); }
        const float* device() const { return data.device(); }
        float*       device()       { return data.device(); }

        tensor& operator= (float val)
        {
            // TODO, do on the device if that's where the memory is living right now.
            auto d = data.host();
            for (size_t i = 0; i < data.size(); ++i)
                d[i] = val;
Davis King's avatar
Davis King committed
225
            return *this;
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        }

        template <typename EXP>
        tensor& operator= (const matrix_exp<EXP>& item)
        {
            DLIB_CASSERT(num_samples() == item.nr() &&
                         nr()*nc()*k() == item.nc(),"");
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");

            set_ptrm(data.host(), m_n, m_nr*m_nc*m_k) = item;
            return *this;
        }

        template <typename EXP>
        tensor& operator+= (const matrix_exp<EXP>& item)
        {
            DLIB_CASSERT(num_samples() == item.nr() &&
                         nr()*nc()*k() == item.nc(),"");
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(data.host(), m_n, m_nr*m_nc*m_k) += item;
            return *this;
        }

        template <typename EXP>
        tensor& operator-= (const matrix_exp<EXP>& item)
        {
            DLIB_CASSERT(num_samples() == item.nr() &&
                         nr()*nc()*k() == item.nc(),"");
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(data.host(), m_n, m_nr*m_nc*m_k) -= item;
            return *this;
        }

        template <typename EXP>
        void set_sample (
            unsigned long idx,
            const matrix_exp<EXP>& item
        )
        {
            DLIB_CASSERT(idx < num_samples(), "");
            DLIB_CASSERT(item.size() == nr()*nc()*k(), "");
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(data.host()+idx*item.size(), item.nr(), item.nc()) = item;
        }


        template <typename EXP>
        void add_to_sample (
            unsigned long idx,
            const matrix_exp<EXP>& item
        )
        {
            DLIB_CASSERT(idx < num_samples(), "");
            DLIB_CASSERT(item.size() == nr()*nc()*k(), "");
            static_assert((is_same_type<float, typename EXP::type>::value == true),
                "To assign a matrix to a tensor the matrix must contain float values");
            set_ptrm(data.host()+idx*item.size(), item.nr(), item.nc()) += item;
        }


290
291
292
293
294
#ifdef DLIB_USE_CUDA
        const cuda::tensor_descriptor& get_cudnn_tensor_descriptor (
        ) const { return cudnn_descriptor; }
#endif

295
296
297
298
299
300
301
302
303
304
305
306


    protected:

        tensor& operator= (const tensor& item) 
        {
            m_n  = item.m_n;
            m_nr = item.m_nr;
            m_nc = item.m_nc;
            m_k  = item.m_k;
            data.set_size(item.data.size());
            std::memcpy(data.host(), item.data.host(), data.size()*sizeof(float));
307
308
309
310
#ifdef DLIB_USE_CUDA
            cudnn_descriptor.set_size(m_n,m_nr,m_nc,m_k);

#endif
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
            return *this;
        }

        tensor(
            const tensor& item
        )  
        {
            *this = item;
        }

        tensor(tensor&& item) = default;
        tensor& operator=(tensor&& item) = default;


        long m_n;
        long m_nr;
        long m_nc;
        long m_k;
        gpu_data data;
330
331
332
#ifdef DLIB_USE_CUDA
        cuda::tensor_descriptor cudnn_descriptor;
#endif 
333
334
335
336
337
338
339
340
    };

    tensor::~tensor()
    {
    }

// ----------------------------------------------------------------------------------------

341
    inline const matrix_op<op_pointer_to_mat<float> > mat (
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        const tensor& t,
        long nr,
        long nc
    )
    {
        DLIB_ASSERT(nr > 0 && nc > 0 , 
                    "\tconst matrix_exp mat(tensor, nr, nc)"
                    << "\n\t nr and nc must be bigger than 0"
                    << "\n\t nr: " << nr
                    << "\n\t nc: " << nc
        );
        DLIB_ASSERT(nr*nc == t.size() , 
                    "\tconst matrix_exp mat(tensor, nr, nc)"
                    << "\n\t The sizes don't match up."
                    << "\n\t nr*nc:    " << nr*nc
                    << "\n\t t.size(): " << t.size()
        );
        typedef op_pointer_to_mat<float> op;
        return matrix_op<op>(op(t.host(),nr,nc));
    }

363
    inline const matrix_op<op_pointer_to_mat<float> > mat (
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        const tensor& t
    )
    {
        DLIB_ASSERT(t.size() != 0, 
                    "\tconst matrix_exp mat(tensor)"
                    << "\n\t The tensor can't be empty."
        );

        return mat(t, t.num_samples(), t.size()/t.num_samples());
    }

// ----------------------------------------------------------------------------------------

    inline bool have_same_dimensions (
        const tensor& a,
        const tensor& b
    )
    {
        return a.num_samples() == b.num_samples() &&
               a.nr() == b.nr() &&
               a.nc() == b.nc() &&
               a.k()  == b.k();
    }

// ----------------------------------------------------------------------------------------

    class resizable_tensor : public tensor
    {
    public:
        resizable_tensor(
        )
        {}

        explicit resizable_tensor(
            long n_, long nr_ = 1, long nc_ = 1, long k_ = 1
        ) 
        {
            set_size(n_,nr_,nc_,k_);
        }

        resizable_tensor(const resizable_tensor&) = default;
        resizable_tensor(resizable_tensor&&) = default;

        void clear(
        )
        {
            set_size(0,0,0,0);
        }

        void copy_size (
            const tensor& item
        )
        /*!
            ensures
                - resizes *this so that: have_same_dimensions(#*this, item)==true
        !*/
        {
            set_size(item.num_samples(), item.nr(), item.nc(), item.k());
        }

        resizable_tensor& operator= (float val)
        {
            tensor::operator=(val);
            return *this;
        }

        template <typename EXP>
        resizable_tensor& operator= (const matrix_exp<EXP>& item)
        {
            tensor::operator=(item);
            return *this;
        }

        template <typename EXP>
        resizable_tensor& operator+= (const matrix_exp<EXP>& item)
        {
            tensor::operator+=(item);
            return *this;
        }

        template <typename EXP>
        resizable_tensor& operator-= (const matrix_exp<EXP>& item)
        {
            tensor::operator-=(item);
            return *this;
        }

        template <typename EXP>
        void set_sample (
            unsigned long idx,
            const matrix_exp<EXP>& item
        )
        {
            tensor::set_sample(idx, item);
        }

        template <typename EXP>
        void add_to_sample (
            unsigned long idx,
            const matrix_exp<EXP>& item
        )
        {
            tensor::add_to_sample(idx, item);
        }

        resizable_tensor& operator= (const resizable_tensor&) = default;
        resizable_tensor& operator= (resizable_tensor&&) = default;

        resizable_tensor& operator= (const tensor& x) 
        {
            tensor::operator=(x);
            return *this;
        }

        void set_size(
            long n_, long nr_ = 1, long nc_ = 1, long k_ = 1
        )
        {
            m_n = n_;
            m_nr = nr_;
            m_nc = nc_;
            m_k = k_;
            data.set_size(m_n*m_nr*m_nc*m_k);
487
488
489
#ifdef DLIB_USE_CUDA
            cudnn_descriptor.set_size(m_n,m_nr,m_nc,m_k);
#endif
490
491
492
        }
    };

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    inline void serialize(const tensor& item, std::ostream& out)
    {
        int version = 1;
        serialize(version, out);
        serialize(item.num_samples(), out);
        serialize(item.nr(), out);
        serialize(item.nc(), out);
        serialize(item.k(), out);
        auto data = item.host();
        for (size_t i = 0; i < item.size(); ++i)
            serialize(data[i], out);
    }

    inline void deserialize(resizable_tensor& item, std::istream& in)
    {
        int version;
        deserialize(version, in);
        if (version != 1)
            throw serialization_error("Unexpected version found while deserializing dlib::resizable_tensor.");

        long num_samples=0, nr=0, nc=0, k=0;
        deserialize(num_samples, in);
        deserialize(nr, in);
        deserialize(nc, in);
        deserialize(k, in);
        item.set_size(num_samples, nr, nc, k);
        auto data = item.host();
        for (size_t i = 0; i < item.size(); ++i)
            deserialize(data[i], in);
    }

524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
// ----------------------------------------------------------------------------------------

    inline double dot(
        const tensor& a,
        const tensor& b
    )
    {
        DLIB_CASSERT(a.size() == b.size(), "");
        const float* da = a.host();
        const float* db = b.host();
        double sum = 0;
        for (size_t i = 0; i < a.size(); ++i)
            sum += da[i]*db[i];
        return sum;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_DNn_TENSOR_H_