"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "7a24977ce3f7b406034362c15c17b4159abe7dfd"
face_recognition.cpp 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
// Copyright (C) 2017  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <boost/python/slice.hpp>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
12
13
#include <dlib/image_io.h>
#include <dlib/clustering.h>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


using namespace dlib;
using namespace std;
using namespace boost::python;

typedef matrix<double,0,1> cv;


class face_recognition_model_v1
{

public:

    face_recognition_model_v1(const std::string& model_filename)
    {
        deserialize(model_filename) >> net;

        cropper = make_shared<random_cropper>();
        cropper->set_chip_dims(150,150);
        cropper->set_randomly_flip(true);
35
        cropper->set_max_object_size(0.99999);
36
        cropper->set_background_crops_fraction(0);
37
        cropper->set_min_object_size(0.97);
38
39
40
41
        cropper->set_translate_amount(0.02);
        cropper->set_max_rotation_degrees(3);
    }

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    boost::python::list cluster(boost::python::list descriptors)
    {
        boost::python::list clusters;

        size_t num_descriptors = len(descriptors);
        
        // In particular, one simple thing we can do is face clustering.  This next bit of code
        // creates a graph of connected faces and then uses the Chinese whispers graph clustering
        // algorithm to identify how many people there are and which faces belong to whom.
        std::vector<sample_pair> edges;
        std::vector<unsigned long> labels;
        for (size_t i = 0; i < num_descriptors; ++i)
        {
            for (size_t j = i+1; j < num_descriptors; ++j)
            {
                // Faces are connected in the graph if they are close enough.  Here we check if
                // the distance between two face descriptors is less than 0.6, which is the
                // decision threshold the network was trained to use.  Although you can
                // certainly use any other threshold you find useful.
                matrix<double,0,1> first_descriptor = boost::python::extract<matrix<double,0,1>>(descriptors[i]);
                matrix<double,0,1> second_descriptor = boost::python::extract<matrix<double,0,1>>(descriptors[j]);

                if (length(first_descriptor-second_descriptor) < 0.6)
                    edges.push_back(sample_pair(i,j));
            }
        }
        const auto num_clusters = chinese_whispers(edges, labels);
        for (size_t i = 0; i < labels.size(); ++i)
        {
            clusters.append(labels[i]);
        }
        return clusters;
    }

    void save_image_chip (
        object img,
        const full_object_detection& face,
        const std::string& chip_filename
    )
    {
        std::vector<full_object_detection> faces(1, face);
        save_image_chips(img, faces, chip_filename);
        return;
    }

    void save_image_chips (
        object img,
        const std::vector<full_object_detection>& faces,
        const std::string& chip_filename
    )
    {
        int num_faces = faces.size();
        std::vector<chip_details> dets;
        for (auto& f : faces)
            dets.push_back(get_face_chip_details(f, 150, 0.25));
        dlib::array<matrix<rgb_pixel>> face_chips;
        extract_image_chips(numpy_rgb_image(img), dets, face_chips);
        int i=0;
        for (auto& chip : face_chips) {
            i++;
            if(num_faces > 1) 
            {
                const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
                save_jpeg(chip, file_name);
            }
            else
            {
                const std::string& file_name = chip_filename + ".jpg";
                save_jpeg(chip, file_name);
            }
        }
    }

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    matrix<double,0,1> compute_face_descriptor (
        object img,
        const full_object_detection& face,
        const int num_jitters
    )
    {
        std::vector<full_object_detection> faces(1, face);
        return compute_face_descriptors(img, faces, num_jitters)[0];
    }

    std::vector<matrix<double,0,1>> compute_face_descriptors (
        object img,
        const std::vector<full_object_detection>& faces,
        const int num_jitters
    )
    {
        if (!is_rgb_python_image(img))
            throw dlib::error("Unsupported image type, must be RGB image.");

        for (auto& f : faces)
        {
            if (f.num_parts() != 68)
                throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style.");
        }


        std::vector<chip_details> dets;
        for (auto& f : faces)
            dets.push_back(get_face_chip_details(f, 150, 0.25));
        dlib::array<matrix<rgb_pixel>> face_chips;
        extract_image_chips(numpy_rgb_image(img), dets, face_chips);

        std::vector<matrix<double,0,1>> face_descriptors;
        face_descriptors.reserve(face_chips.size());

        if (num_jitters <= 1)
        {
            // extract descriptors and convert from float vectors to double vectors
            for (auto& d : net(face_chips,16))
                face_descriptors.push_back(matrix_cast<double>(d));
        }
        else
        {
            for (auto& fimg : face_chips)
                face_descriptors.push_back(matrix_cast<double>(mean(mat(net(jitter_image(fimg,num_jitters),16)))));
        }

        return face_descriptors;
    }

private:

    std::shared_ptr<random_cropper> cropper;

    std::vector<matrix<rgb_pixel>> jitter_image(
        const matrix<rgb_pixel>& img,
        const int num_jitters
    )
    {
        std::vector<mmod_rect> raw_boxes(1), ignored_crop_boxes;
        raw_boxes[0] = shrink_rect(get_rect(img),3);
        std::vector<matrix<rgb_pixel>> crops; 

        matrix<rgb_pixel> temp; 
        for (int i = 0; i < num_jitters; ++i)
        {
            (*cropper)(img, raw_boxes, temp, ignored_crop_boxes);
            crops.push_back(move(temp));
        }
        return crops;
    }


    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;

    template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
    using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;

    template <int N, template <typename> class BN, int stride, typename SUBNET> 
    using block  = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;

    template <int N, typename SUBNET> using ares      = relu<residual<block,N,affine,SUBNET>>;
    template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;

    template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
    template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
    template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
    template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
    template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;

    using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
                                alevel0<
                                alevel1<
                                alevel2<
                                alevel3<
                                alevel4<
                                max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
                                input_rgb_image_sized<150>
                                >>>>>>>>>>>>;
    anet_type net;
};


// ----------------------------------------------------------------------------------------

void bind_face_recognition()
{
    using boost::python::arg;
    {
    class_<face_recognition_model_v1>("face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart.  The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2", init<std::string>())
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, (arg("img"),arg("face"),arg("num_jitters")=0),
            "Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
            )
        .def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, (arg("img"),arg("faces"),arg("num_jitters")=0),
            "Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors.  "
            "If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
233
234
235
236
237
238
239
240
241
            )
        .def("save_image_chip", &face_recognition_model_v1::save_image_chip, (arg("img"),arg("face"),arg("chip_filename")),
            "Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix"
            )
        .def("save_image_chips", &face_recognition_model_v1::save_image_chips, (arg("img"),arg("faces"),arg("chip_filename")),
            "Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix"
            )
        .def("cluster", &face_recognition_model_v1::cluster, (arg("descriptors")),
            "Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using chinese_whispers."
242
243
244
245
246
247
248
249
250
251
252
253
254
            );
    }

    {
    typedef std::vector<full_object_detection> type;
    class_<type>("full_object_detections", "An array of full_object_detection objects.")
        .def(vector_indexing_suite<type>())
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def_pickle(serialize_pickle<type>());
    }
}