tensor_tools.cpp 15.6 KB
Newer Older
1
2
3
4
5
6
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_TeNSOR_TOOLS_CPP_
#define DLIB_TeNSOR_TOOLS_CPP_

#include "tensor_tools.h"
Davis King's avatar
Davis King committed
7
#include "../string.h"
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <atomic>

namespace dlib
{
    namespace
    {
        std::atomic<bool>& dnn_prefer_fastest_algo (
        )
        {
            static std::atomic<bool> var(true);
            return var;
        }
    }

    bool dnn_prefer_fastest_algorithms (
    )
    {
        return dnn_prefer_fastest_algo();
    }

    void set_dnn_prefer_fastest_algorithms(
    )
    {
        dnn_prefer_fastest_algo() = true;
    }

    void set_dnn_prefer_smallest_algorithms(
    )
    {
        dnn_prefer_fastest_algo() = false;
    }
}
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

namespace dlib { namespace tt
{

// ----------------------------------------------------------------------------------------

    void gemm (
        float beta,
        tensor& dest,
        float alpha,
        const tensor& lhs,
        bool trans_lhs,
        const tensor& rhs,
        bool trans_rhs
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::gemm(beta, dest, alpha, lhs, trans_lhs, rhs, trans_rhs);
#else
59
60
61
62
63
64
65
66
67
68
69
        if (beta != 0)
        {
            if (trans_lhs && trans_rhs)
                dest = alpha*trans(mat(lhs))*trans(mat(rhs)) + beta*mat(dest);
            else if (!trans_lhs && trans_rhs)
                dest = alpha*mat(lhs)*trans(mat(rhs)) + beta*mat(dest);
            else if (trans_lhs && !trans_rhs)
                dest = alpha*trans(mat(lhs))*mat(rhs) + beta*mat(dest);
            else
                dest = alpha*mat(lhs)*mat(rhs) + beta*mat(dest);
        }
70
        else
71
72
73
74
75
76
77
78
79
80
        {
            if (trans_lhs && trans_rhs)
                dest = alpha*trans(mat(lhs))*trans(mat(rhs));
            else if (!trans_lhs && trans_rhs)
                dest = alpha*mat(lhs)*trans(mat(rhs));
            else if (trans_lhs && !trans_rhs)
                dest = alpha*trans(mat(lhs))*mat(rhs);
            else
                dest = alpha*mat(lhs)*mat(rhs);
        }
81
82
83
84
85
86
87
88
89
#endif
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    tensor_rand::
    tensor_rand(
        unsigned long long seed
Davis King's avatar
Davis King committed
90
91
92
93
94
95
    ) 
#ifdef DLIB_USE_CUDA
    :rnd(seed){}
#else
    {rnd.set_seed(cast_to_string(seed)); }
#endif
96
97
98
99
100
101
102
103
104
105

    void tensor_rand::
    fill_gaussian (
        tensor& data,
        float mean,
        float stddev
    )
    {
        DLIB_CASSERT(data.size()%2 == 0,"");
#ifdef DLIB_USE_CUDA
Davis King's avatar
Davis King committed
106
        rnd.fill_gaussian(data, mean, stddev);
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#else
        for (auto& x : data) 
            x = rnd.get_random_gaussian()*stddev + mean;
#endif
    }

    void tensor_rand::
    fill_uniform (
        tensor& data
    )
    {
#ifdef DLIB_USE_CUDA
        rnd.fill_uniform(data);
#else
        for (auto& x : data) 
            x = rnd.get_random_float();
#endif
    }

// ----------------------------------------------------------------------------------------
127
128
129
// ----------------------------------------------------------------------------------------

    void multiply (
130
        bool add_to,
131
132
133
134
135
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
136
137
138
139
140
141
142
        DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
            dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
            dest.nc() == src1.nc() && src1.nc() == src2.nc() ,"");
        const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
        DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
                    (src1.num_samples()==1 || src1.num_samples()==MD) &&
                    (src2.num_samples()==1 || src2.num_samples()==MD) ,"");
143
#ifdef DLIB_USE_CUDA
144
        cuda::multiply(add_to, dest, src1, src2);
145
#else
146
        cpu::multiply(add_to, dest, src1, src2);
147
148
149
150
#endif

    }

151
    void multiply_conv (
152
        bool add_to,
153
154
155
156
157
158
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
#ifdef DLIB_USE_CUDA
159
        cuda::multiply_conv(add_to, dest, src1, src2);
160
#else
161
        cpu::multiply_conv(add_to, dest, src1, src2);
162
163
164
#endif
    }

165
166
167
// ----------------------------------------------------------------------------------------

    void affine_transform(
168
        tensor& dest,
169
170
171
172
173
174
        const tensor& src,
        const float A,
        const float B
    )
    {
#ifdef DLIB_USE_CUDA
175
        cuda::affine_transform(dest,src,A,B);
176
177
178
179
180
#else
        cpu::affine_transform(dest,src,A,B);
#endif
    }

181
182
183
184
185
186
187
188
189
190
191
192
193
    void affine_transform(
        tensor& dest,
        const tensor& src,
        const float A
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(dest,src,A);
#else
        cpu::affine_transform(dest,src,A,0);
#endif
    }

194
195
196
197
198
199
200
201
202
203
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
204
        cuda::affine_transform(dest,src1,src2,A,B,C);
205
206
207
208
209
#else
        cpu::affine_transform(dest,src1,src2,A,B,C);
#endif
    }

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const float A,
        const float B
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(dest,src1,src2,A,B);
#else
        cpu::affine_transform(dest,src1,src2,A,B,0);
#endif
    }

225
226
227
228
229
230
231
232
233
234
235
236
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C,
        const float D
    )
    {
#ifdef DLIB_USE_CUDA
237
        cuda::affine_transform(dest,src1,src2,src3,A,B,C,D);
238
239
240
241
242
#else
        cpu::affine_transform(dest,src1,src2,src3,A,B,C,D);
#endif
    }

243
244
245
// ----------------------------------------------------------------------------------------

    void affine_transform(
246
        tensor& dest,
247
248
249
250
251
252
        const tensor& src,
        const tensor& A,
        const tensor& B
    )
    {
#ifdef DLIB_USE_CUDA
253
        cuda::affine_transform(dest,src,A,B);
254
255
256
257
258
#else
        cpu::affine_transform(dest,src,A,B);
#endif
    }

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// ----------------------------------------------------------------------------------------

    void affine_transform_conv(
        tensor& dest,
        const tensor& src,
        const tensor& A,
        const tensor& B
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_conv(dest,src,A,B);
#else
        cpu::affine_transform_conv(dest,src,A,B);
#endif
    }

Davis King's avatar
Davis King committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// ----------------------------------------------------------------------------------------

    void compute_adam_update (
        tensor& s,
        tensor& m,
        tensor& v,
        const float t,
        const float learning_rate,
        const float weight_decay,
        const float momentum1,
        const float momentum2,
        const tensor& params,
        const tensor& params_grad
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::compute_adam_update(s, m, v, t, learning_rate, weight_decay, momentum1,
            momentum2, params, params_grad);
#else
        cpu::compute_adam_update(s, m, v, t, learning_rate, weight_decay, momentum1,
            momentum2, params, params_grad);
#endif
    }

299
300
// ----------------------------------------------------------------------------------------

301
302
303
304
305
306
    void batch_normalize_inference (
        resizable_tensor& dest,
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta,
        const tensor& running_means,
307
        const tensor& running_variances
308
309
310
    )
    {
#ifdef DLIB_USE_CUDA
311
        cuda::batch_normalize_inference(dest,src,gamma,beta,running_means,running_variances);
312
#else
313
        cpu::batch_normalize_inference(dest,src,gamma,beta,running_means,running_variances);
314
315
316
#endif
    }

317
318
319
320
    void batch_normalize (
        resizable_tensor& dest,
        resizable_tensor& means,
        resizable_tensor& vars,
321
322
        const double averaging_factor,
        resizable_tensor& running_means,
323
        resizable_tensor& running_variances,
324
325
326
327
328
329
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta 
    )
    {
#ifdef DLIB_USE_CUDA
330
        cuda::batch_normalize(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
331
#else
332
        cpu::batch_normalize(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#endif
    }

    void batch_normalize_gradient (
            const tensor& gradient_input,
            const tensor& means,
            const tensor& invstds,
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
    )
    {
             
#ifdef DLIB_USE_CUDA
        cuda::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
350
#else
351
        cpu::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
352
353
354
355
356
#endif
    }

// ----------------------------------------------------------------------------------------

357
358
359
360
361
362
    void batch_normalize_conv_inference (
        resizable_tensor& dest,
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta,
        const tensor& running_means,
363
        const tensor& running_variances
364
365
366
    )
    {
#ifdef DLIB_USE_CUDA
367
        cuda::batch_normalize_conv_inference(dest,src,gamma,beta,running_means,running_variances);
368
#else
369
        cpu::batch_normalize_conv_inference(dest,src,gamma,beta,running_means,running_variances);
370
371
372
#endif
    }

373
374
375
376
    void batch_normalize_conv (
        resizable_tensor& dest,
        resizable_tensor& means,
        resizable_tensor& vars,
377
378
        const double averaging_factor,
        resizable_tensor& running_means,
379
        resizable_tensor& running_variances,
380
381
382
383
384
385
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta 
    )
    {
#ifdef DLIB_USE_CUDA
386
        cuda::batch_normalize_conv(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
387
#else
388
        cpu::batch_normalize_conv(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#endif
    }

    void batch_normalize_conv_gradient (
            const tensor& gradient_input,
            const tensor& means,
            const tensor& invstds,
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
    )
    {
             
#ifdef DLIB_USE_CUDA
        cuda::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
406
#else
407
        cpu::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
408
409
410
411
412
413
414
415
416
417
418
#endif
    }

// ----------------------------------------------------------------------------------------

    void threshold (
        tensor& data,
        float thresh
    )
    {
#ifdef DLIB_USE_CUDA
419
        cuda::threshold(data,thresh);
420
421
422
423
424
#else
        cpu::threshold(data,thresh);
#endif
    }

425
426
427
428
429
430
431
432
433
434
435
436
437
438
    void dot (
        const tensor& a,
        const tensor& b,
        tensor& result,
        size_t idx
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::dot(a,b,result,idx);
#else
        cpu::dot(a,b,result,idx);
#endif
    }

439
440
441
442
443
444
445
446
447
448
449
450
// ----------------------------------------------------------------------------------------

    void add(
        float beta,
        tensor& dest,
        float alpha,
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::add(beta,dest,alpha,src);
#else
451
        cpu::add(beta,dest,alpha,src);
452
453
454
#endif
    }

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// ----------------------------------------------------------------------------------------

    void add (
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::add(dest, src1, src2);
#else
        cpu::add(dest, src1, src2);
#endif
    }

470
471
// ----------------------------------------------------------------------------------------

472
    void assign_conv_bias_gradient (
473
474
475
476
477
        tensor& grad,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
478
        cuda::assign_conv_bias_gradient(grad,gradient_input);
479
#else
480
        cpu::assign_conv_bias_gradient(grad,gradient_input);
481
482
483
#endif
    }

484
485
// ----------------------------------------------------------------------------------------

486
    void assign_bias_gradient (
487
488
489
490
491
        tensor& grad,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
492
        cuda::assign_bias_gradient(grad,gradient_input);
493
#else
494
        cpu::assign_bias_gradient(grad,gradient_input);
495
496
497
#endif
    }

498
499
500
501
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    void softmax (
502
        tensor& dest,
503
504
505
506
507
508
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::softmax(dest,src);
#else
509
        cpu::softmax(dest,src);
510
511
512
513
514
#endif
    }

    void softmax_gradient (
        tensor& grad,
515
        const tensor& dest,
516
517
518
519
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
520
        cuda::softmax_gradient(grad, dest, gradient_input);
521
#else
522
        cpu::softmax_gradient(grad, dest, gradient_input);
523
524
525
526
527
528
#endif
    }

// ----------------------------------------------------------------------------------------

    void sigmoid (
529
        tensor& dest,
530
531
532
533
534
535
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::sigmoid(dest,src);
#else
536
        cpu::sigmoid(dest,src);
537
538
539
540
541
542
543
544
545
546
#endif
    }

    void sigmoid_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
547
        cuda::sigmoid_gradient(grad, dest, gradient_input);
548
#else
549
        cpu::sigmoid_gradient(grad, dest, gradient_input);
550
551
552
553
554
555
#endif
    }

// ----------------------------------------------------------------------------------------

    void relu (
556
        tensor& dest,
557
558
559
560
561
562
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::relu(dest,src);
#else
563
        cpu::relu(dest,src);
564
565
566
567
568
569
570
571
572
573
#endif
    }

    void relu_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
574
        cuda::relu_gradient(grad, dest, gradient_input);
575
#else
576
        cpu::relu_gradient(grad, dest, gradient_input);
577
578
579
#endif
    }

Davis King's avatar
Davis King committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
// ----------------------------------------------------------------------------------------

    void prelu (
        tensor& dest,
        const tensor& src,
        const tensor& param
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::prelu(dest, src, param);
#else
        cpu::prelu(dest, src, param);
#endif
    }

    void prelu_gradient (
        tensor& grad,
        const tensor& src,
        const tensor& gradient_input,
        const tensor& param,
        tensor& params_grad 
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::prelu_gradient(grad, src, gradient_input, param, params_grad);
#else
        cpu::prelu_gradient(grad, src, gradient_input, param, params_grad);
#endif
    }

610
611
612
// ----------------------------------------------------------------------------------------

    void tanh (
613
        tensor& dest,
614
615
616
617
618
619
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::tanh(dest,src);
#else
620
        cpu::tanh(dest,src);
621
622
623
624
625
626
627
628
629
630
#endif
    }

    void tanh_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
631
        cuda::tanh_gradient(grad, dest, gradient_input);
632
#else
633
        cpu::tanh_gradient(grad, dest, gradient_input);
634
635
636
637
638
639
640
641
642
#endif
    }

// ----------------------------------------------------------------------------------------

}}

#endif // DLIB_TeNSOR_TOOLS_CPP_