scan_fhog_pyramid.h 26.7 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SCAN_fHOG_PYRAMID_H__
#define DLIB_SCAN_fHOG_PYRAMID_H__

#include "scan_fhog_pyramid_abstract.h"
#include "../matrix.h"
#include "../image_transforms.h"
#include "../array.h"
#include "../array2d.h"
#include "object_detector.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    class scan_fhog_pyramid : noncopyable
    {

    public:

        typedef matrix<double,0,1> feature_vector_type;

        typedef Pyramid_type pyramid_type;

        scan_fhog_pyramid (
        );  

        template <
            typename image_type
            >
        void load (
            const image_type& img
        );

        inline bool is_loaded_with_image (
        ) const;

        inline void copy_configuration (
            const scan_fhog_pyramid& item
        );

        void set_detection_window_size (
            unsigned long width,
            unsigned long height
        )
        {
            window_width = width;
            window_height = height;
        }

        inline unsigned long get_detection_window_width (
        ) const { return window_width; }
        inline unsigned long get_detection_window_height (
        ) const { return window_height; }

        inline unsigned long get_num_detection_templates (
        ) const;

        inline unsigned long get_num_movable_components_per_detection_template (
        ) const;

        void set_padding (
            unsigned long new_padding
        )
        {
            padding = new_padding;
        }

        unsigned long get_padding (
        ) const { return padding; }

        void set_cell_size (
            unsigned long new_cell_size
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(new_cell_size > 0 ,
                "\t void scan_fhog_pyramid::set_cell_size()"
                << "\n\t You can't have zero sized fHOG cells. "
                << "\n\t this: " << this
                );

            cell_size = new_cell_size;
        }

        unsigned long get_cell_size (
        ) const { return cell_size; }

        inline long get_num_dimensions (
        ) const;

        unsigned long get_max_pyramid_levels (
        ) const;

        void set_max_pyramid_levels (
            unsigned long max_levels
        );

        void set_min_pyramid_layer_size (
            unsigned long width,
            unsigned long height 
        );

        inline unsigned long get_min_pyramid_layer_width (
        ) const;

        inline unsigned long get_min_pyramid_layer_height (
        ) const;

        void detect (
            const feature_vector_type& w,
            std::vector<std::pair<double, rectangle> >& dets,
            const double thresh
        ) const
        {
            fhog_filterbank temp = build_fhog_filterbank(w);
            detect(temp, dets, thresh);
        }

        class fhog_filterbank 
        {
            friend class scan_fhog_pyramid;
        public:
            inline unsigned long get_num_dimensions() const
            {
                unsigned long dims = 0;
                for (unsigned long i = 0; i < filters.size(); ++i)
                {
                    dims += filters[i].size();
                }
                return dims;
            }

            const std::vector<matrix<float> >& get_filters() const { return filters;} 

            unsigned long num_separable_filters() const 
            {
                unsigned long num = 0;
                for (unsigned long i = 0; i < row_filters.size(); ++i)
                {
                    num += row_filters[i].size();
                }
                return num;
            }

        private:
            std::vector<matrix<float> > filters;
            std::vector<std::vector<matrix<float,0,1> > > row_filters, col_filters;
        };

        fhog_filterbank build_fhog_filterbank (
            const feature_vector_type& weights 
        ) const
        {
            fhog_filterbank temp;
            temp.filters.resize(31);
            temp.row_filters.resize(31);
            temp.col_filters.resize(31);

            // load filters from w
            unsigned long width, height;
            compute_fhog_window_size(width, height);
            const long size = width*height;
            for (unsigned long i = 0; i < temp.filters.size(); ++i)
            {
                matrix<double> u,v,w,f;
                f = reshape(rowm(weights, range(i*size, (i+1)*size-1)), height, width);
                temp.filters[i] = matrix_cast<float>(f);

                svd3(f, u,w,v);

                matrix<double> w2 = w;
                rsort_columns(u,w);
                rsort_columns(v,w2);

                double thresh = std::max(1e-3, max(w)*0.01);
                w = round_zeros(w, thresh);


                for (long j = 0; j < w.size(); ++j)
                {
                    if (w(j) != 0)
                    {
                        temp.col_filters[i].push_back(matrix_cast<float>(colm(u,j)*std::sqrt(w(j))));
                        temp.row_filters[i].push_back(matrix_cast<float>(colm(v,j)*std::sqrt(w(j))));
                    }
                }
            }

            return temp;
        }

        void detect (
            const fhog_filterbank& w,
            std::vector<std::pair<double, rectangle> >& dets,
            const double thresh
        ) const;


        void get_feature_vector (
            const full_object_detection& obj,
            feature_vector_type& psi
        ) const;

        full_object_detection get_full_object_detection (
            const rectangle& rect,
            const feature_vector_type& w
        ) const;

        const rectangle get_best_matching_rect (
            const rectangle& rect
        ) const;

        double get_nuclear_norm_regularization_strength (
        ) const { return nuclear_norm_regularization_strength; }

        void set_nuclear_norm_regularization_strength (
            double strength
        ) 
        /*!
            requires
                - strength >= 0
            ensures
                - #get_nuclear_norm_regularization_strength() == strength
        !*/
        {
            nuclear_norm_regularization_strength = strength;
        }

        unsigned long get_fhog_window_width (
        ) const 
        {
            unsigned long width, height;
            compute_fhog_window_size(width, height);
            return width;
        }

        unsigned long get_fhog_window_height (
        ) const 
        {
            unsigned long width, height;
            compute_fhog_window_size(width, height);
            return height;
        }

        template <typename T>
        friend void serialize (
            const scan_fhog_pyramid<T>& item,
            std::ostream& out
        );

        template <typename T>
        friend void deserialize (
            scan_fhog_pyramid<T>& item,
            std::istream& in 
        );

    private:
        inline void compute_fhog_window_size(
            unsigned long& width,
            unsigned long& height
        ) const
        {
            const rectangle temp = grow_rect(image_to_fhog(centered_rect(point(0,0),window_width,window_height), cell_size), padding);
            width = temp.width();
            height = temp.height();
        }

        static bool compare_pair_rect (
            const std::pair<double, rectangle>& a,
            const std::pair<double, rectangle>& b
        )
        {
            return a.first < b.first;
        }

        void get_mapped_rect_and_metadata (
            const unsigned long number_pyramid_levels,
            const rectangle& rect,
            rectangle& mapped_rect,
            rectangle& fhog_rect,
            unsigned long& best_level
        ) const;

        double get_match_score (
            rectangle r1,
            rectangle r2
        ) const
        {
            // make the rectangles overlap as much as possible before computing the match score.
            r1 = move_rect(r1, r2.tl_corner());
            return (r1.intersect(r2).area())/(double)(r1 + r2).area();
        }

        typedef array<array2d<float> > fhog_image;

        array<fhog_image> feats;
        int cell_size;
        unsigned long padding; 
        unsigned long window_width;
        unsigned long window_height;
        unsigned long max_pyramid_levels;
        unsigned long min_pyramid_layer_width;
        unsigned long min_pyramid_layer_height;
        double nuclear_norm_regularization_strength;

    };

// ----------------------------------------------------------------------------------------

    template <typename T>
    void serialize (
        const scan_fhog_pyramid<T>& item,
        std::ostream& out
    )
    {
        int version = 1;
        serialize(version, out);
        serialize(item.feats, out);
        serialize(item.cell_size, out);
        serialize(item.padding, out);
        serialize(item.window_width, out);
        serialize(item.window_height, out);
        serialize(item.max_pyramid_levels, out);
        serialize(item.min_pyramid_layer_width, out);
        serialize(item.min_pyramid_layer_height, out);
        serialize(item.nuclear_norm_regularization_strength, out);
        serialize(item.get_num_dimensions(), out);
    }

// ----------------------------------------------------------------------------------------

    template <typename T>
    void deserialize (
        scan_fhog_pyramid<T>& item,
        std::istream& in 
    )
    {
        int version = 0;
        deserialize(version, in);
        if (version != 1)
            throw serialization_error("Unsupported version found when deserializing a scan_fhog_pyramid object.");

        deserialize(item.feats, in);
        deserialize(item.cell_size, in);
        deserialize(item.padding, in);
        deserialize(item.window_width, in);
        deserialize(item.window_height, in);
        deserialize(item.max_pyramid_levels, in);
        deserialize(item.min_pyramid_layer_width, in);
        deserialize(item.min_pyramid_layer_height, in);
        deserialize(item.nuclear_norm_regularization_strength, in);

        // When developing some feature extractor, it's easy to accidentally change its
        // number of dimensions and then try to deserialize data from an older version of
        // your extractor into the current code.  This check is here to catch that kind of
        // user error.
        long dims;
        deserialize(dims, in);
        if (item.get_num_dimensions() != dims)
            throw serialization_error("Number of dimensions in serialized scan_fhog_pyramid doesn't match the expected number.");
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
//                         scan_fhog_pyramid member functions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    scan_fhog_pyramid<Pyramid_type>::
    scan_fhog_pyramid (
    ) : 
        cell_size(8),
        padding(1),
        window_width(64),
        window_height(64),
        max_pyramid_levels(1000),
        min_pyramid_layer_width(64),
        min_pyramid_layer_height(64),
        nuclear_norm_regularization_strength(0)
    {
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    template <
        typename image_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    load (
        const image_type& img
    )
    {
        unsigned long levels = 0;
        rectangle rect = get_rect(img);

        // figure out how many pyramid levels we should be using based on the image size
        pyramid_type pyr;
        do
        {
            rect = pyr.rect_down(rect);
            ++levels;
        } while (rect.width() >= min_pyramid_layer_width && rect.height() >= min_pyramid_layer_height &&
                 levels < max_pyramid_levels);

        if (feats.max_size() < levels)
            feats.set_max_size(levels);
        feats.set_size(levels);

        unsigned long width, height;
        compute_fhog_window_size(width,height);

        // build our feature pyramid
        extract_fhog_features(img, feats[0], cell_size,height,width);
        if (feats.size() > 1)
        {
            image_type temp1, temp2;
            pyr(img, temp1);
            extract_fhog_features(temp1, feats[1], cell_size,height,width);
            swap(temp1,temp2);

            for (unsigned long i = 2; i < feats.size(); ++i)
            {
                pyr(temp2, temp1);
                extract_fhog_features(temp1, feats[i], cell_size,height,width);
                swap(temp1,temp2);
            }
        }
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    bool scan_fhog_pyramid<Pyramid_type>::
    is_loaded_with_image (
    ) const
    {
        return feats.size() != 0;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    copy_configuration (
        const scan_fhog_pyramid& item
    )
    {
        cell_size = item.cell_size;
        padding = item.padding;
        window_width = item.window_width;
        window_height = item.window_height;
        max_pyramid_levels = item.max_pyramid_levels;
        min_pyramid_layer_width = item.min_pyramid_layer_width;
        min_pyramid_layer_height = item.min_pyramid_layer_height;
        nuclear_norm_regularization_strength = item.nuclear_norm_regularization_strength;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    unsigned long scan_fhog_pyramid<Pyramid_type>::
    get_num_detection_templates (
    ) const
    {
        return 1;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    unsigned long scan_fhog_pyramid<Pyramid_type>::
    get_num_movable_components_per_detection_template (
    ) const
    {
        return 0;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    long scan_fhog_pyramid<Pyramid_type>::
    get_num_dimensions (
    ) const
    {
        unsigned long width, height;
        compute_fhog_window_size(width,height);
        return width*height*31;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    unsigned long scan_fhog_pyramid<Pyramid_type>::
    get_max_pyramid_levels (
    ) const
    {
        return max_pyramid_levels;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    set_max_pyramid_levels (
        unsigned long max_levels
    )
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(max_levels > 0 ,
            "\t void scan_fhog_pyramid::set_max_pyramid_levels()"
            << "\n\t You can't have zero levels. "
            << "\n\t max_levels: " << max_levels 
            << "\n\t this: " << this
            );

        max_pyramid_levels = max_levels;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    detect (
        const fhog_filterbank& w,
        std::vector<std::pair<double, rectangle> >& dets,
        const double thresh
    ) const
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(is_loaded_with_image() &&
                    w.get_num_dimensions() == get_num_dimensions(), 
            "\t void scan_fhog_pyramid::detect()"
            << "\n\t Invalid inputs were given to this function "
            << "\n\t is_loaded_with_image(): " << is_loaded_with_image()
            << "\n\t w.get_num_dimensions(): " << w.get_num_dimensions()
            << "\n\t get_num_dimensions():   " << get_num_dimensions()
            << "\n\t this: " << this
            );

        dets.clear();

        unsigned long width, height;
        compute_fhog_window_size(width,height);
        const point anchor((width+1)%2, 
                           (height+1)%2);

        array2d<float> saliency_image;
        array2d<float> temp;
        pyramid_type pyr;

        const unsigned long num_separable_filters = w.num_separable_filters();
        // for all pyramid levels
        for (unsigned long l = 0; l < feats.size(); ++l)
        {
            rectangle area;
584
            if (num_separable_filters > 31*3)
Davis King's avatar
Davis King committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
            {
                area = spatially_filter_image(feats[l][0], saliency_image, w.filters[0]);
                for (unsigned long i = 1; i < w.filters.size(); ++i)
                {
                    // now we filter but the output adds to saliency_image rather than
                    // overwriting it.
                    spatially_filter_image(feats[l][i], saliency_image, w.filters[i], 1, false, true);
                }
            }
            else
            {
                saliency_image.clear();

                // find the first filter to apply
                unsigned long i = 0;
                while (i < w.row_filters.size() && w.row_filters[i].size() == 0) 
                    ++i;

                for (; i < w.row_filters.size(); ++i)
                {
                    for (unsigned long j = 0; j < w.row_filters[i].size(); ++j)
                    {
                        if (saliency_image.size() == 0)
                            area = spatially_filter_image_separable(feats[l][i], saliency_image, w.row_filters[i][j], w.col_filters[i][j],1,false,false);
                        else
                            area = spatially_filter_image_separable(feats[l][i], saliency_image, w.row_filters[i][j], w.col_filters[i][j],1,false,true);
                    }
                }
                if (saliency_image.size() == 0)
                {
                    saliency_image.set_size(feats[l][0].nr(), feats[l][0].nc());
                    assign_all_pixels(saliency_image, 0);
                }
            }

            // now search the saliency image for any detections
            for (long r = area.top(); r <= area.bottom(); ++r)
            {
                for (long c = area.left(); c <= area.right(); ++c)
                {
                    // if we found a detection
                    if (saliency_image[r][c] >= thresh)
                    {
                        rectangle rect = fhog_to_image(centered_rect(point(c,r)+anchor,width-2*padding,height-2*padding), cell_size, height,width);
                        rect = pyr.rect_up(rect, l);
                        dets.push_back(std::make_pair(saliency_image[r][c], rect));
                    }
                }
            }
        }

        std::sort(dets.rbegin(), dets.rend(), compare_pair_rect);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    const rectangle scan_fhog_pyramid<Pyramid_type>::
    get_best_matching_rect (
        const rectangle& rect
    ) const
    {
        rectangle mapped_rect, fhog_rect;
        unsigned long best_level;
        get_mapped_rect_and_metadata(max_pyramid_levels, rect, mapped_rect, fhog_rect, best_level);
        return mapped_rect;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    get_mapped_rect_and_metadata (
        const unsigned long number_pyramid_levels,
        const rectangle& rect,
        rectangle& mapped_rect,
        rectangle& fhog_rect,
        unsigned long& best_level
    ) const
    {
        pyramid_type pyr;
        best_level = 0;
        double best_match_score = -1;


        unsigned long width, height;
        compute_fhog_window_size(width,height);

        // Figure out the pyramid level which best matches rect against our detection
        // window. 
        for (unsigned long l = 0; l < number_pyramid_levels; ++l)
        {
            const rectangle rect_fhog_space = image_to_fhog(pyr.rect_down(rect,l), cell_size, height,width);

            const rectangle win_image_space = pyr.rect_up(fhog_to_image(centered_rect(center(rect_fhog_space),width-2*padding,height-2*padding), cell_size, height,width), l);

            const double match_score = get_match_score(win_image_space, rect); 
            if (match_score > best_match_score)
            {
                best_match_score = match_score;
                best_level = l;
                fhog_rect = centered_rect(center(rect_fhog_space), width, height);
            }

            if (rect_fhog_space.area() <= 1) 
                break;
        }
        mapped_rect = pyr.rect_up(fhog_to_image(shrink_rect(fhog_rect,padding), cell_size,height,width),best_level);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    full_object_detection scan_fhog_pyramid<Pyramid_type>::
    get_full_object_detection (
        const rectangle& rect,
        const feature_vector_type& 
    ) const
    {
        return full_object_detection(rect);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    get_feature_vector (
        const full_object_detection& obj,
        feature_vector_type& psi
    ) const
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(is_loaded_with_image() &&
                    psi.size() >= get_num_dimensions() &&
                    obj.num_parts() == 0,
            "\t void scan_fhog_pyramid::get_feature_vector()"
            << "\n\t Invalid inputs were given to this function "
            << "\n\t is_loaded_with_image(): " << is_loaded_with_image()
            << "\n\t psi.size():             " << psi.size()
            << "\n\t get_num_dimensions():   " << get_num_dimensions()
            << "\n\t obj.num_parts():                            " << obj.num_parts()
            << "\n\t this: " << this
            );



        rectangle mapped_rect;
        unsigned long best_level;
        rectangle fhog_rect;
        get_mapped_rect_and_metadata(feats.size(), obj.get_rect(), mapped_rect, fhog_rect, best_level);


        long i = 0;
        for (unsigned long ii = 0; ii < feats[best_level].size(); ++ii)
        {
            const rectangle rect = get_rect(feats[best_level][0]);
            for (long r = fhog_rect.top(); r <= fhog_rect.bottom(); ++r)
            {
                for (long c = fhog_rect.left(); c <= fhog_rect.right(); ++c)
                {
                    if (rect.contains(c,r))
                        psi(i) += feats[best_level][ii][r][c];
                    ++i;
                }
            }
        }
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    void scan_fhog_pyramid<Pyramid_type>::
    set_min_pyramid_layer_size (
        unsigned long width,
        unsigned long height 
    )
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(width > 0 && height > 0 ,
            "\t void scan_fhog_pyramid::set_min_pyramid_layer_size()"
            << "\n\t These sizes can't be zero. "
            << "\n\t width:  " << width 
            << "\n\t height: " << height 
            << "\n\t this:   " << this
            );

        min_pyramid_layer_width = width;
        min_pyramid_layer_height = height;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    unsigned long scan_fhog_pyramid<Pyramid_type>::
    get_min_pyramid_layer_width (
    ) const
    {
        return min_pyramid_layer_width;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    unsigned long scan_fhog_pyramid<Pyramid_type>::
    get_min_pyramid_layer_height (
    ) const
    {
        return min_pyramid_layer_height;
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    matrix<unsigned char> draw_fhog (
        const object_detector<scan_fhog_pyramid<Pyramid_type> >& detector,
        const long cell_draw_size = 15
    )
    {
        typename scan_fhog_pyramid<Pyramid_type>::fhog_filterbank fb = detector.get_scanner().build_fhog_filterbank(detector.get_w());
        return draw_fhog(fb.get_filters(),cell_draw_size);
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type
        >
    unsigned long num_separable_filters (
        const object_detector<scan_fhog_pyramid<Pyramid_type> >& detector
    )
    {
        typename scan_fhog_pyramid<Pyramid_type>::fhog_filterbank fb = detector.get_scanner().build_fhog_filterbank(detector.get_w());
        return fb.num_separable_filters();
    }

// ----------------------------------------------------------------------------------------

    template <
        typename Pyramid_type,
        typename svm_struct_prob_type
        >
    void configure_nuclear_norm_regularizer (
        const scan_fhog_pyramid<Pyramid_type>& scanner,
        svm_struct_prob_type& prob
    )
    { 
        const double strength = scanner.get_nuclear_norm_regularization_strength();
        if (strength != 0)
        {
            const unsigned long width = scanner.get_fhog_window_width();
            const unsigned long height = scanner.get_fhog_window_height();
            for (int i = 0; i < 31; ++i)
            {
                prob.add_nuclear_norm_regularizer(i*width*height, height, width, strength);
            }
            prob.set_cache_based_epsilon(0.001);
        }
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SCAN_fHOG_PYRAMID_H__