adapt_simp.cpp 6.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// Numerical Integration method based on the adaptive Simpson method in
// Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited,"
// BIT, Vol. 40, 2000, pp. 84-101

// Test functions taken from Pedro Gonnet's dissertation at ETH: 
// Adaptive Quadrature Re-Revisited
// http://e-collection.library.ethz.ch/eserv/eth:65/eth-65-02.pdf

#include <iostream>
#include <iomanip>
#include <stdint.h>
#include <dlib/matrix.h>

using namespace std;
using namespace dlib;

//***************************************************************//
//*Begin definitions of test functions //

//Initial Test Function
double f(double x)
{
    return pow(x,0.5);
}

// The Lyness - Kaganove test functions from page 167 of Gonnet's thesis.

// lambda in [0,1], alpha in [-0.5,0], x in [0,1]
double LK1(double x, double lambda, double alpha)
{
    return pow(abs(x-lambda),alpha);
}

// lambda in [0,1], alpha in [0,1], x in [0,1]
double LK2(double x, double lambda, double alpha)
{
    if(x > lambda)
    {
        return 0;
    }
    else
    {
        return pow(e, alpha*x);
    }
}

// lambda in [0,1], alpha in [0,4], x in [0,1]
double LK3(double x, double lambda, double alpha)
{
    return pow(e,-alpha*abs(x-lambda));
}

// lambda in [1,2], alpha in [-6,-3], x in [1,2]
double LK4(double x, double lambda, double alpha)
{
    return pow(10,alpha)/((x-lambda)*(x-lambda)+pow(10,alpha));
}

// lambda_i in [1,2], alpha in [-5,-3], x in [1,2]
double LK5(double x, double lambda1, double lambda2, double lambda3, double lambda4, double alpha)
{
    return   pow(10,alpha)/((x-lambda1)*(x-lambda1)+pow(10,alpha)) 
           + pow(10,alpha)/((x-lambda2)*(x-lambda2)+pow(10,alpha))
           + pow(10,alpha)/((x-lambda3)*(x-lambda3)+pow(10,alpha))
           + pow(10,alpha)/((x-lambda4)*(x-lambda4)+pow(10,alpha));
}

// lambda in [0,1], alpha in [1.8,2], x in [0,1]
double LK6(double x, double lambda, double alpha)
{
    double beta = pow(10,alpha)/max(lambda*lambda,(1-lambda)*(1-lambda)); 
    return 2*beta*cos(beta*(x-lambda)*(x-lambda));
}

// Test Battery from reference [33] and p. 168 of Gonnet's thesis.

// x in [0,1]
double GG1(double x)
{
    return pow(e,x);
}

// x in [0,1]
double GG2(double x)
{
    if(x > 0.3)
    {
        return 1.0;
    }
    else
    {
        return 0;
    }
}

// x in [0,1]
double GG3(double x)
{
    return pow(x,0.5);
}

// x in [0,1]
double GG4(double x)
{
    return 22/25*cosh(x)-cos(x);
}

// x in [-1,1]
double GG5(double x)
{
    return 1/(pow(x,4) + pow(x,2) + 0.9);
}

// x in [0,1]
double GG6(double x)
{
    return pow(x,1.5);
}

// x in [0,1]
double GG7(double x)
{
    return pow(x,-0.5);
}

// x in [0,1]
double GG8(double x)
{
    return 1/(1 + pow(x,4));
}

// x in [0,1]
double GG9(double x)
{
    return 2/(2 + sin(10*pi*x));
}

// x in [0,1]
double GG10(double x)
{
    return 1/(1+x);
}

// x in [0,1]
double GG11(double x)
{
    1/(1 + pow(e,x));
}

// x in [0,1]
double GG12(double x)
{
    return x/(pow(e,x)-1);
}

// x in [0.1, 1]
double GG13(double x)
{
    return sin(100.0*pi*x)/(pi*x);
}

// x in [0, 10]
double GG14(double x)
{
    return sqrt(50)*pow(e,-50.0*pi*x*x);
}

// x in [0, 10]
double GG15(double x)
{
    return 25.0*pow(e,-25.0*x);
}

// x in [0, 10]
double GG16(double x)
{
    return 50.0/(pi*(2500.0*x*x+1));
}

// x in [0.01, 1]
double GG17(double x)
{
    return 50.0*pow((sin(50.0*pi*x)/(50.0*pi*x)),2);
}

// x in [0, pi]
double GG18(double x)
{
    return cos(cos(x)+3*sin(x)+2*cos(2*x)+3*cos(3*x));
}

// x in [0,1]
double GG19(double x)
{
    return log10(x);
}

// x in [-1,1]
double GG20(double x)
{
    return 1/(1.005+x*x);
}

// x in [0,1]
double GG21(double x)
{
    return 1/cosh(20.0*(x-1/5)) + 1/cosh(400.0*(x-2/5)) + 1/cosh(8000.0*(x-3/5));
}

// x in [0,1]
double GG22(double x)
{
    return 4*pi*pi*x*sin(20.0*pi*x)*cos(2*pi*x);
}

// x in [0,1]
double GG23(double x)
{
    return 1/(1+(230*x-30)*(230*x-30));
}

// x in [0,3]
double GG24(double x)
{
    return floor(pow(e,x));
}

// x in [0,5]
double GG25(double x)
{
    if(x < 1)
    {
        return (x + 1);
    }
    else if(x >= 1 && x <= 3)
    {
        return 3 - x;
    }
    else
    {
        return 2;
    }
}

// Returns double machine precision
// Taken from Wikipedia en.wikipedia.org/wiki/Machine_epsilon
template<typename float_t, typename int_t>
float_t machine_eps()
{
    union
    {
        float_t f;
        int_t   i;
    }   one, one_plus, little, last_little;
 
    one.f    = 1.0;
    little.f = 1.0;
    last_little.f = little.f;

    while(true)
    {
        one_plus.f = one.f;
        one_plus.f += little.f;
 
        if( one.i != one_plus.i )
        {
            last_little.f = little.f;
            little.f /= 2.0;
        }
        else
        {
            return last_little.f;
        }
    }
}

// Main Integration Function.
// Supporting Integration Function
template <typename T, typename funct>
T AdaptSimpstp(const funct& f, T a, T b, T fa, T fm, T fb, T is)
{
    T m = (a + b)/2;
    T h = (b - a)/4;
    T fml = f(a + h);
    T fmr = f(b - h);
    T i1 = h/1.5*(fa+4*fm+fb);
    T i2 = h/3.0*(fa+4*(fml+fmr)+2*fm+fb);
    i1 = (16.0*i2 - i1)/15.0;
    T Q = 0;

    if((is+(i1-i2) == is) || (m <= a) || (b <= m))
    {
        if((m <= a) || (b <= m))
        {
            cout << "INT ERR" << endl;
        }
    
        Q = i1;
    }
    else 
    {
       Q = AdaptSimpstp(f, a, m, fa, fml, fm, is) + AdaptSimpstp(f,m,b,fm,fmr,fb,is); 
    }

    return Q;
}

// Main integration function. 
// f -- function to integrate, 
// a -- left end point
// b -- right end point
// tol -- error tolerance 

template <typename T, typename funct>
T AdaptSimp(const funct& f, T a, T b, T tol)
{
    T eps = machine_eps<T, uint64_t>();

    if(tol < eps)
    {
        tol = eps;
    }

    const T ba = b-a;
    const T fa = f(a);
    const T fb = f(b);
    const T fm = f((a+b)/2);

    T is =ba/8*(fa+fb+fm+ f(a + 0.9501*ba) + f(a + 0.2311*ba) + f(a + 0.6068*ba)
                           + f(a + 0.4860*ba) + f(a + 0.8913*ba));

    if(is == 0)
    {
        is = b-a;
    }

    is = is*tol/eps;
    
    T tstvl = AdaptSimpstp(f, a, b, fa, fm, fb, is);

    return tstvl;

}

// Examples 
int main()
{

typedef double T;

T tol = 1e-10;
T a = 0;
T b = 5;

T tstvl2 = AdaptSimp(&f, a, b, tol);

cout << "Integral Value is: " << std::setprecision(18) << tstvl2 << endl;

return 0;

}