svm_c_trainer.cpp 7.42 KB
Newer Older
1

2
#include "testing_results.h"
3
4
5
6
#include <boost/python.hpp>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include "serialize_pickle.h"
7
#include <dlib/svm_threaded.h>
Davis King's avatar
Davis King committed
8
#include "pyassert.h"
9
10
11
12
13
14

using namespace dlib;
using namespace std;
using namespace boost::python;

typedef matrix<double,0,1> sample_type; 
Davis King's avatar
Davis King committed
15
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
16

Davis King's avatar
Davis King committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
template <typename trainer_type>
typename trainer_type::trained_function_type train (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& samples,
    const std::vector<double>& labels
)
{
    pyassert(is_binary_classification_problem(samples,labels), "Invalid inputs");
    return trainer.train(samples, labels);
}

template <typename trainer_type>
void set_epsilon ( trainer_type& trainer, double eps)
{
    pyassert(eps > 0, "epsilon must be > 0");
    trainer.set_epsilon(eps);
}

template <typename trainer_type>
double get_epsilon ( const trainer_type& trainer) { return trainer.get_epsilon(); }


template <typename trainer_type>
void set_cache_size ( trainer_type& trainer, long cache_size)
{
    pyassert(cache_size > 0, "cache size must be > 0");
    trainer.set_cache_size(cache_size);
}
45

Davis King's avatar
Davis King committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
template <typename trainer_type>
long get_cache_size ( const trainer_type& trainer) { return trainer.get_cache_size(); }


template <typename trainer_type>
void set_c ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c(C);
}

template <typename trainer_type>
void set_c_class1 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class1(C);
}

template <typename trainer_type>
void set_c_class2 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class2(C);
}
70

Davis King's avatar
Davis King committed
71
72
73
74
75
76
77
78
79
80
81
82
83
template <typename trainer_type>
double get_c_class1 ( const trainer_type& trainer) { return trainer.get_c_class1(); }
template <typename trainer_type>
double get_c_class2 ( const trainer_type& trainer) { return trainer.get_c_class2(); }

template <typename trainer_type>
class_<trainer_type> setup_trainer (
    const std::string& name
)
{
    return class_<trainer_type>(name.c_str())
        .def("train", train<trainer_type>)
        .def("set_c", set_c<trainer_type>)
84
85
        .add_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
        .add_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>)
Davis King's avatar
Davis King committed
86
87
88
89
90
91
92
93
94
95
        .add_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
}

template <typename trainer_type>
class_<trainer_type> setup_trainer2 (
    const std::string& name
)
{

    return setup_trainer<trainer_type>(name)
96
        .add_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
Davis King's avatar
Davis King committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
}

void set_gamma (
    svm_c_trainer<radial_basis_kernel<sample_type> >& trainer,
    double gamma
)
{
    pyassert(gamma > 0, "gamma must be > 0");
    trainer.set_kernel(radial_basis_kernel<sample_type>(gamma));
}

double get_gamma (
    const svm_c_trainer<radial_basis_kernel<sample_type> >& trainer
)
{
    return trainer.get_kernel().gamma;
}

void set_gamma_sparse (
    svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> >& trainer,
    double gamma
118
119
)
{
Davis King's avatar
Davis King committed
120
121
122
    pyassert(gamma > 0, "gamma must be > 0");
    trainer.set_kernel(sparse_radial_basis_kernel<sparse_vect>(gamma));
}
123

Davis King's avatar
Davis King committed
124
125
126
127
128
double get_gamma_sparse (
    const svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> >& trainer
)
{
    return trainer.get_kernel().gamma;
129
130
}

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// ----------------------------------------------------------------------------------------

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
    const long folds
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    return cross_validate_trainer(trainer, x, y, folds);
}

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer_t (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
    const unsigned long folds,
    const unsigned long num_threads
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    pyassert(1 < num_threads, "The number of threads specified must not be zero.");
    return cross_validate_trainer_threaded(trainer, x, y, folds, num_threads);
}
164

Davis King's avatar
Davis King committed
165
166
// ----------------------------------------------------------------------------------------

167
168
void bind_svm_c_trainer()
{
Davis King's avatar
Davis King committed
169
170
171
172
173
174
175
176
177
178
179
    {
        typedef svm_c_trainer<radial_basis_kernel<sample_type> > T;
        setup_trainer2<T>("svm_c_trainer_radial_basis")
            .add_property("gamma", get_gamma, set_gamma);
        def("cross_validate_trainer", _cross_validate_trainer<T>);
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>);
    }

    {
        typedef svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
        setup_trainer2<T>("svm_c_trainer_sparse_radial_basis")
180
            .add_property("gamma", get_gamma_sparse, set_gamma_sparse);
Davis King's avatar
Davis King committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        def("cross_validate_trainer", _cross_validate_trainer<T>);
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>);
    }

    {
        typedef svm_c_trainer<histogram_intersection_kernel<sample_type> > T;
        setup_trainer2<T>("svm_c_trainer_histogram_intersection");
        def("cross_validate_trainer", _cross_validate_trainer<T>);
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>);
    }

    {
        typedef svm_c_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
        setup_trainer2<T>("svm_c_trainer_sparse_histogram_intersection");
        def("cross_validate_trainer", _cross_validate_trainer<T>);
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>);
    }

    {
        typedef svm_c_linear_trainer<linear_kernel<sample_type> > T;
        setup_trainer<T>("svm_c_trainer_linear")
            .add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

        def("cross_validate_trainer", _cross_validate_trainer<T>);
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>);
    }

    {
        typedef svm_c_linear_trainer<sparse_linear_kernel<sparse_vect> > T;
        setup_trainer<T>("svm_c_trainer_sparse_linear")
            .add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

        def("cross_validate_trainer", _cross_validate_trainer<T>);
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>);
    }
224
225
226
}