optimization_ex.cpp 10.9 KB
Newer Older
1
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
Davis King's avatar
Davis King committed
2
3
/*

4
5
    This is an example illustrating the use the general purpose non-linear 
    optimization routines from the dlib C++ Library.
Davis King's avatar
Davis King committed
6

7
    The library provides implementations of the conjugate gradient,  
Davis King's avatar
Davis King committed
8
    BFGS, L-BFGS, and BOBYQA optimization algorithms.  These algorithms allow 
9
    you to find the minimum of a function of many input variables.  
Davis King's avatar
Davis King committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    This example walks though a few of the ways you might put these 
    routines to use.

*/


#include "dlib/optimization.h"
#include <iostream>


using namespace std;
using namespace dlib;

// ----------------------------------------------------------------------------------------

// Here we just make a typedef for a variable length column vector of doubles.  
typedef matrix<double,0,1> column_vector;

// ----------------------------------------------------------------------------------------
// Below we create a few functions.  When you get down into main() you will see that
// we can use the optimization algorithms to find the minimums of these functions.
// ----------------------------------------------------------------------------------------

double rosen ( const column_vector& m)
/*
    This function computes what is known as Rosenbrock's function.  It is 
    a function of two input variables and has a global minimum at (1,1).
    So when we use this function to test out the optimization algorithms
    we will see that the minimum found is indeed at the point (1,1). 
*/
{
    const double x = m(0); 
    const double y = m(1);

    // compute Rosenbrock's function and return the result
    return 100.0*pow(y - x*x,2) + pow(1 - x,2);
}

// This is a helper function used while optimizing the rosen() function.  
const column_vector rosen_derivative ( const column_vector& m)
/*!
    ensures
        - returns the gradient vector for the rosen function
!*/
{
    const double x = m(0);
    const double y = m(1);

    // make us a column vector of length 2
    column_vector res(2);

    // now compute the gradient vector
    res(0) = -400*x*(y-x*x) - 2*(1-x); // derivative of rosen() with respect to x
    res(1) = 200*(y-x*x);              // derivative of rosen() with respect to y
    return res;
}

// ----------------------------------------------------------------------------------------

class test_function
{
    /*
        This object is an example of what is known as a "function object" in C++.
        It is simply an object with an overloaded operator().  This means it can 
        be used in a way that is similar to a normal C function.  The interesting
        thing about this sort of function is that it can have state.  
        
        In this example, our test_function object contains a column_vector 
        as its state and it computes the mean squared error between this 
        stored column_vector and the arguments to its operator() function.
Davis King's avatar
Davis King committed
80
81

        This is a very simple function, however, in general you could compute
Davis King's avatar
Davis King committed
82
        any function you wanted here.  An example of a typical use would be 
Davis King's avatar
Davis King committed
83
        to find the parameters of some regression function that minimized 
Davis King's avatar
Davis King committed
84
85
        the mean squared error on a set of data.  In this case the arguments
        to the operator() function would be the parameters of your regression
Davis King's avatar
Davis King committed
86
87
88
89
        function.  You would loop over all your data samples and compute the output 
        of the regression function for each data sample given the parameters and 
        return a measure of the total error.   The dlib optimization functions 
        could then be used to find the parameters that minimized the error.
Davis King's avatar
Davis King committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    */
public:

    test_function (
        const column_vector& input
    )
    {
        target = input;
    }

    double operator() ( const column_vector& arg) const
    {
        // return the mean squared error between the target vector and the input vector
        return mean(squared(target-arg));
    }

private:
    column_vector target;
};

// ----------------------------------------------------------------------------------------

int main()
{
114
115
116
117
118
119
120
121
122
123
124
125
126
    try
    {
        // make a column vector of length 2
        column_vector starting_point;
        starting_point.set_size(2);


        // Set the starting point to (4,8).  This is the point the optimization algorithm
        // will start out from and it will move it closer and closer to the function's 
        // minimum point.   So generally you want to try and compute a good guess that is
        // somewhat near the actual optimum value.
        starting_point = 4, 8;

127
128
129
130
131
132
133
134
135
136
137
        // The first example below finds the minimum of the rosen() function and uses the
        // analytical derivative computed by rosen_derivative().  Since it is very easy to
        // make a mistake while coding a function like rosen_derivative() it is a good idea
        // to compare your derivative function against a numerical approximation and see if
        // the results are similar.  If they are very different then you probably made a 
        // mistake.  So the first thing we do is compare the results at a test point: 
        cout << "Difference between analytic derivative and numerical approximation of derivative: " 
              << length(derivative(&rosen)(starting_point) - rosen_derivative(starting_point)) << endl;


        cout << "Find the minimum of the rosen function()" << endl;
138
139
        // Now we use the find_min() function to find the minimum point.  The first argument
        // to this routine is the search strategy we want to use.  The second argument is the 
140
        // stopping strategy.  Below I'm using the objective_delta_stop_strategy which just 
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        // says that the search should stop when the change in the function being optimized 
        // is small enough.

        // The other arguments to find_min() are the function to be minimized, its derivative, 
        // then the starting point, and the last is an acceptable minimum value of the rosen() 
        // function.  That is, if the algorithm finds any inputs to rosen() that gives an output 
        // value <= -1 then it will stop immediately.  Usually you supply a number smaller than 
        // the actual global minimum.  So since the smallest output of the rosen function is 0 
        // we just put -1 here which effectively causes this last argument to be disregarded.

        find_min(bfgs_search_strategy(),  // Use BFGS search algorithm
                 objective_delta_stop_strategy(1e-7), // Stop when the change in rosen() is less than 1e-7
                 &rosen, &rosen_derivative, starting_point, -1);
        // Once the function ends the starting_point vector will contain the optimum point 
        // of (1,1).
        cout << starting_point << endl;


        // Now lets try doing it again with a different starting point and the version
        // of find_min() that doesn't require you to supply a derivative function.  
        // This version will compute a numerical approximation of the derivative since 
        // we didn't supply one to it.
        starting_point = -94, 5.2;
        find_min_using_approximate_derivatives(bfgs_search_strategy(),
                                               objective_delta_stop_strategy(1e-7),
                                               &rosen, starting_point, -1);
        // Again the correct minimum point is found and stored in starting_point
        cout << starting_point << endl;


        // Here we repeat the same thing as above but this time using the L-BFGS 
        // algorithm.  L-BFGS is very similar to the BFGS algorithm, however, BFGS 
        // uses O(N^2) memory where N is the size of the starting_point vector.  
        // The L-BFGS algorithm however uses only O(N) memory.  So if you have a 
        // function of a huge number of variables the L-BFGS algorithm is probably 
        // a better choice.
177
        starting_point = 0.8, 1.3;
178
        find_min(lbfgs_search_strategy(10),  // The 10 here is basically a measure of how much memory L-BFGS will use.
179
180
                 objective_delta_stop_strategy(1e-7).be_verbose(),  // Adding be_verbose() causes a message to be 
                                                                    // printed for each iteration of optimization.
181
182
                 &rosen, &rosen_derivative, starting_point, -1);

183
        cout << endl << starting_point << endl;
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

        starting_point = -94, 5.2;
        find_min_using_approximate_derivatives(lbfgs_search_strategy(10),
                                               objective_delta_stop_strategy(1e-7),
                                               &rosen, starting_point, -1);
        cout << starting_point << endl;





        // Now lets look at using the test_function object with the optimization 
        // functions.  
        cout << "\nFind the minimum of the test_function" << endl;

        column_vector target;
        target.set_size(4);
        starting_point.set_size(4);

        // This variable will be used as the target of the test_function.   So,
        // our simple test_function object will have a global minimum at the
        // point given by the target.  We will then use the optimization 
        // routines to find this minimum value.
        target = 3, 5, 1, 7;

        // set the starting point far from the global minimum
        starting_point = 1,2,3,4;
        find_min_using_approximate_derivatives(bfgs_search_strategy(),
                                               objective_delta_stop_strategy(1e-7),
                                               test_function(target), starting_point, -1);
214
        // At this point the correct value of (3,5,1,7) should be found and stored in starting_point
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        cout << starting_point << endl;

        // Now lets try it again with the conjugate gradient algorithm.
        starting_point = -4,5,99,3;
        find_min_using_approximate_derivatives(cg_search_strategy(),
                                               objective_delta_stop_strategy(1e-7),
                                               test_function(target), starting_point, -1);
        cout << starting_point << endl;



        // Finally, lets try the BOBYQA algorithm.  This is a technique specially
        // designed to minimize a function in the absence of derivative information.  
        // Generally speaking, it is the method of choice if derivatives are not available.
        starting_point = -4,5,99,3;
        find_min_bobyqa(test_function(target), 
                        starting_point, 
                        9,    // number of interpolation points
                        uniform_matrix<double>(4,1, -1e100),  // lower bound constraint
                        uniform_matrix<double>(4,1, 1e100),   // upper bound constraint
                        10,    // initial trust region radius
                        1e-6,  // stopping trust region radius
                        100    // max number of objective function evaluations
        );
        cout << starting_point << endl;
Davis King's avatar
Davis King committed
240

241
242
243
244
245
    }
    catch (std::exception& e)
    {
        cout << e.what() << endl;
    }
Davis King's avatar
Davis King committed
246
247
}