object_detection.cpp 20.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/gui_widgets.h>
11
#include "simple_object_detector.h"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123


using namespace dlib;
using namespace std;
using namespace boost::python;

template <typename T>
void resize(T& v, unsigned long n) { v.resize(n); }

// ----------------------------------------------------------------------------------------

long left(const rectangle& r) { return r.left(); }
long top(const rectangle& r) { return r.top(); }
long right(const rectangle& r) { return r.right(); }
long bottom(const rectangle& r) { return r.bottom(); }
long width(const rectangle& r) { return r.width(); }
long height(const rectangle& r) { return r.height(); }

string print_rectangle_str(const rectangle& r)
{
    std::ostringstream sout;
    sout << r;
    return sout.str();
}

string print_rectangle_repr(const rectangle& r)
{
    std::ostringstream sout;
    sout << "rectangle(" << r.left() << "," << r.top() << "," << r.right() << "," << r.bottom() << ")";
    return sout.str();
}

// ----------------------------------------------------------------------------------------

string print_rgb_pixel_str(const rgb_pixel& p)
{
    std::ostringstream sout;
    sout << "red: "<< (int)p.red 
         << ", green: "<< (int)p.green 
         << ", blue: "<< (int)p.blue;
    return sout.str();
}

string print_rgb_pixel_repr(const rgb_pixel& p)
{
    std::ostringstream sout;
    sout << "rgb_pixel(" << p.red << "," << p.green << "," << p.blue << ")";
    return sout.str();
}

// ----------------------------------------------------------------------------------------

std::vector<rectangle> run_detector (
    frontal_face_detector& detector,
    object img,
    const unsigned int upsampling_amount
)
{
    pyramid_down<2> pyr;
    array2d<unsigned char> temp;

    if (is_gray_python_image(img))
    {
        if (upsampling_amount == 0)
        {
            return detector(numpy_gray_image(img));
        }
        else
        {
            pyramid_up(numpy_gray_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else if (is_rgb_python_image(img))
    {
        if (upsampling_amount == 0)
        {
            return detector(numpy_rgb_image(img));
        }
        else
        {
            pyramid_up(numpy_rgb_image(img), temp, pyr);
            unsigned int levels = upsampling_amount-1;
            while (levels > 0)
            {
                levels--;
                pyramid_up(temp);
            }

            std::vector<rectangle> res = detector(temp);
            for (unsigned long i = 0; i < res.size(); ++i)
                res[i] = pyr.rect_down(res[i], upsampling_amount);
            return res;
        }
    }
    else
    {
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
    }
}


124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// ----------------------------------------------------------------------------------------

struct simple_object_detector_py
{
    simple_object_detector detector;
    unsigned int upsampling_amount;
    
    std::vector<rectangle> run_detector1 (object img, const unsigned int upsampling_amount_) 
    { return ::run_detector(detector, img, upsampling_amount_); }

    std::vector<rectangle> run_detector2 (object img) 
    { return ::run_detector(detector, img, upsampling_amount); }
};

void serialize (const simple_object_detector_py& item, std::ostream& out)
{
    int version = 1;
    serialize(item.detector, out);
    serialize(version, out);
    serialize(item.upsampling_amount, out);
}

void deserialize (simple_object_detector_py& item, std::istream& in)
{
    int version = 0;
    deserialize(item.detector, in);
    deserialize(version, in);
    if (version != 1)
        throw dlib::serialization_error("Unexpected version found while deserializing a simple_object_detector.");
    deserialize(item.upsampling_amount, in);
}

156
157
// ----------------------------------------------------------------------------------------

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
void image_window_set_image_fhog_detector (
    image_window& win,
    const frontal_face_detector& det
)
{
    win.set_image(draw_fhog(det));
}

void image_window_set_image_simple_detector (
    image_window& win,
    const simple_object_detector_py& det
)
{
    win.set_image(draw_fhog(det.detector));
}

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
void image_window_set_image (
    image_window& win,
    object img
)
{
    if (is_gray_python_image(img))
        return win.set_image(numpy_gray_image(img));
    else if (is_rgb_python_image(img))
        return win.set_image(numpy_rgb_image(img));
    else
        throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
}


void add_red_overlay_rects (
    image_window& win,
    const std::vector<rectangle>& rects
)
{
    win.add_overlay(rects, rgb_pixel(255,0,0));
}

// ----------------------------------------------------------------------------------------

boost::shared_ptr<image_window> make_image_window_from_image(object img)
{
    boost::shared_ptr<image_window> win(new image_window);
    image_window_set_image(*win, img);
    return win;
}

boost::shared_ptr<image_window> make_image_window_from_image_and_title(object img, const string& title)
{
    boost::shared_ptr<image_window> win(new image_window);
    image_window_set_image(*win, img);
    win->set_title(title);
    return win;
}

// ----------------------------------------------------------------------------------------

215
string print_simple_test_results(const simple_test_results& r)
216
{
217
218
219
    std::ostringstream sout;
    sout << "precision: "<<r.precision << ", recall: "<< r.recall << ", average precision: " << r.average_precision;
    return sout.str();
220
221
222
223
224
225
226
227
}

// ----------------------------------------------------------------------------------------

void bind_object_detection()
{
    using boost::python::arg;

Davis King's avatar
Davis King committed
228
229
    class_<simple_object_detector_training_options>("simple_object_detector_training_options", 
        "This object is a container for the options to the train_simple_object_detector() routine.")
230
        .add_property("be_verbose", &simple_object_detector_training_options::be_verbose, 
Davis King's avatar
Davis King committed
231
232
233
                                    &simple_object_detector_training_options::be_verbose,
                                    "If true, train_simple_object_detector() will print out a lot of information to the screen while training."
                                    )
234
        .add_property("add_left_right_image_flips", &simple_object_detector_training_options::add_left_right_image_flips, 
Davis King's avatar
Davis King committed
235
236
237
238
239
240
241
242
243
244
                                                    &simple_object_detector_training_options::add_left_right_image_flips,
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
images.  This doubles the size of the training dataset." 
                    /*!
                      if true, train_simple_object_detector() will assume the objects are
                      left/right symmetric and add in left right flips of the training
                      images.  This doubles the size of the training dataset.
                    !*/
                                                    )
245
        .add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size,
Davis King's avatar
Davis King committed
246
247
                                               &simple_object_detector_training_options::detection_window_size,
                                               "The sliding window used will have about this many pixels inside it.")
248
        .add_property("C", &simple_object_detector_training_options::C,
Davis King's avatar
Davis King committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                           &simple_object_detector_training_options::C,
"C is the usual SVM C regularization parameter.  So it is passed to \n\
structural_object_detection_trainer::set_c().  Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting.  Therefore, you must determine the proper setting of \n\
this parameter experimentally." 
                    /*!
                      C is the usual SVM C regularization parameter.  So it is passed to
                      structural_object_detection_trainer::set_c().  Larger values of C
                      will encourage the trainer to fit the data better but might lead to
                      overfitting.  Therefore, you must determine the proper setting of
                      this parameter experimentally.
                    !*/
                           )
263
        .add_property("num_threads", &simple_object_detector_training_options::num_threads,
Davis King's avatar
Davis King committed
264
265
266
267
268
269
270
271
272
273
274
275
276
                                     &simple_object_detector_training_options::num_threads,
"train_simple_object_detector() will use this many threads of \n\
execution.  Set this to the number of CPU cores on your machine to \n\
obtain the fastest training speed." 
                    /*!
                      train_simple_object_detector() will use this many threads of
                      execution.  Set this to the number of CPU cores on your machine to
                      obtain the fastest training speed.
                    !*/
                                     );



277
278
279
280
281
282
283
284

    class_<simple_test_results>("simple_test_results")
        .add_property("precision", &simple_test_results::precision)
        .add_property("recall", &simple_test_results::recall)
        .add_property("average_precision", &simple_test_results::average_precision)
        .def("__str__", &::print_simple_test_results);


285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    {
    typedef rectangle type;
    class_<type>("rectangle", "This object represents a rectangular area of an image.")
        .def(init<long,long,long,long>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
        .def("left",   &::left)
        .def("top",    &::top)
        .def("right",  &::right)
        .def("bottom", &::bottom)
        .def("width",  &::width)
        .def("height", &::height)
        .def("__str__", &::print_rectangle_str)
        .def("__repr__", &::print_rectangle_repr)
        .def_pickle(serialize_pickle<type>());
    }

    def("get_frontal_face_detector", get_frontal_face_detector, 
        "Returns the default face detector");

303
    def("train_simple_object_detector", train_simple_object_detector,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        (arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
    - options.C > 0 \n\
ensures \n\
    - Uses the structural_object_detection_trainer to train a \n\
      simple_object_detector based on the labeled images in the XML file \n\
      dataset_filename.  This function assumes the file dataset_filename is in the \n\
      XML format produced by dlib's save_image_dataset_metadata() routine. \n\
    - This function will apply a reasonable set of default parameters and \n\
      preprocessing techniques to the training procedure for simple_object_detector \n\
      objects.  So the point of this function is to provide you with a very easy \n\
      way to train a basic object detector.   \n\
    - The trained object detector is serialized to the file detector_output_filename." 
    /*!
        requires
            - options.C > 0
        ensures
            - Uses the structural_object_detection_trainer to train a
              simple_object_detector based on the labeled images in the XML file
              dataset_filename.  This function assumes the file dataset_filename is in the
              XML format produced by dlib's save_image_dataset_metadata() routine.
            - This function will apply a reasonable set of default parameters and
              preprocessing techniques to the training procedure for simple_object_detector
              objects.  So the point of this function is to provide you with a very easy
              way to train a basic object detector.  
            - The trained object detector is serialized to the file detector_output_filename.
    !*/
        );
332
333
334

    def("test_simple_object_detector", test_simple_object_detector,
        (arg("dataset_filename"), arg("detector_filename")),
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"ensures \n\
    - Loads an image dataset from dataset_filename.  We assume dataset_filename is \n\
      a file using the XML format written by save_image_dataset_metadata(). \n\
    - Loads a simple_object_detector from the file detector_filename.  This means \n\
      detector_filename should be a file produced by the train_simple_object_detector()  \n\
      routine. \n\
    - This function tests the detector against the dataset and returns the \n\
      precision, recall, and average precision of the detector.  In fact, The \n\
      return value of this function is identical to that of dlib's \n\
      test_object_detection_function() routine.  Therefore, see the documentation \n\
      for test_object_detection_function() for a detailed definition of these \n\
      metrics. " 
    /*!
        ensures
            - Loads an image dataset from dataset_filename.  We assume dataset_filename is
              a file using the XML format written by save_image_dataset_metadata().
            - Loads a simple_object_detector from the file detector_filename.  This means
              detector_filename should be a file produced by the train_simple_object_detector() 
              routine.
            - This function tests the detector against the dataset and returns the
              precision, recall, and average precision of the detector.  In fact, The
              return value of this function is identical to that of dlib's
              test_object_detection_function() routine.  Therefore, see the documentation
              for test_object_detection_function() for a detailed definition of these
              metrics. 
    !*/
        );
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

    {
    typedef simple_object_detector_py type;
    class_<type>("simple_object_detector", 
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
        .def("__init__", make_constructor(&load_object_from_file<type>),  
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine." 
            /*!
                Loads a simple_object_detector from a file that contains the output of the
                train_simple_object_detector() routine.
            !*/)
        .def("__call__", &type::run_detector1, (arg("image"), arg("upsample_num_times")),
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.   \n\
    - Upsamples the image upsample_num_times before running the basic \n\
      detector.  If you don't know how many times you want to upsample then \n\
      don't provide a value for upsample_num_times and an appropriate \n\
      default will be used." 
            /*!
                requires
                    - image is a numpy ndarray containing either an 8bit grayscale or RGB
                      image.
                    - upsample_num_times >= 0
                ensures
                    - This function runs the object detector on the input image and returns
                      a list of detections.  
                    - Upsamples the image upsample_num_times before running the basic
                      detector.  If you don't know how many times you want to upsample then
                      don't provide a value for upsample_num_times and an appropriate
                      default will be used.
            !*/
            )
        .def("__call__", &type::run_detector2, (arg("image")),
"requires \n\
    - image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
      image. \n\
ensures \n\
    - This function runs the object detector on the input image and returns \n\
      a list of detections.  " 
            /*!
                requires
                    - image is a numpy ndarray containing either an 8bit grayscale or RGB
                      image.
                ensures
                    - This function runs the object detector on the input image and returns
                      a list of detections.  
            !*/
            )
        .def_pickle(serialize_pickle<type>());
    }

419
420
421
422
    {
    typedef frontal_face_detector type;
    class_<type>("fhog_object_detector", 
        "This object represents a sliding window histogram-of-oriented-gradients based object detector.")
423
424
425
        .def("__init__", make_constructor(&load_object_from_file<type>),  
"Loads a fhog_object_detector from a file that contains a serialized  \n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>> object.  " )
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
        .def("__call__", &::run_detector, (arg("image"), arg("upsample_num_times")=0),
"requires \n\
    - image is a numpy ndarray containing either an 8bit \n\
      grayscale or RGB image. \n\
    - upsample_num_times >= 0 \n\
ensures \n\
    - This function runs the object detector on the input image \n\
      and returns a list of detections.   \n\
    - You can detect smaller objects by upsampling the image \n\
      before running the detector.  This function can do that \n\
      for you automatically if you set upsample_num_times to a \n\
      non-zero value.  Specifically, the image is doubled in \n\
      size upsample_num_times times.   " 
            /*!
                requires
                    - image is a numpy ndarray containing either an 8bit
                      grayscale or RGB image.
                    - upsample_num_times >= 0
                ensures
                    - This function runs the object detector on the input image
                      and returns a list of detections.  
                    - You can detect smaller objects by upsampling the image
                      before running the detector.  This function can do that
                      for you automatically if you set upsample_num_times to a
                      non-zero value.  Specifically, the image is doubled in
                      size upsample_num_times times.   
            !*/
            )
        .def_pickle(serialize_pickle<type>());
    }

    {
    typedef image_window type;
    typedef void (image_window::*set_title_funct)(const std::string&);
    typedef void (image_window::*add_overlay_funct)(const std::vector<rectangle>& r, rgb_pixel p);
    class_<type,boost::noncopyable>("image_window", 
        "This is a GUI window capable of showing images on the screen.")
        .def("__init__", make_constructor(&make_image_window_from_image), 
            "Create an image window that displays the given numpy image.")
        .def("__init__", make_constructor(&make_image_window_from_image_and_title),
            "Create an image window that displays the given numpy image and also has the given title.")
        .def("set_image", image_window_set_image, arg("image"), 
            "Make the image_window display the given image.")
469
470
471
472
        .def("set_image", image_window_set_image_fhog_detector, arg("detector"), 
            "Make the image_window display the given HOG detector's filters.")
        .def("set_image", image_window_set_image_simple_detector, arg("detector"), 
            "Make the image_window display the given HOG detector's filters.")
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        .def("set_title", (set_title_funct)&type::set_title, arg("title"),
            "Set the title of the window to the given value.")
        .def("clear_overlay", &type::clear_overlay, "Remove all overlays from the image_window.")
        .def("add_overlay", (add_overlay_funct)&type::add_overlay<rgb_pixel>, (arg("rectangles"), arg("color")),
            "Add a list of rectangles to the image_window.  They will be displayed as boxes of the given color.")
        .def("add_overlay", add_red_overlay_rects, 
            "Add a list of rectangles to the image_window.  They will be displayed as red boxes.")
        .def("wait_until_closed", &type::wait_until_closed, 
            "This function blocks until the window is closed.");
    }

    {
    typedef std::vector<rectangle> type;
    class_<type>("rectangles", "An array of rectangle objects.")
        .def(vector_indexing_suite<type>())
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def_pickle(serialize_pickle<type>());
    }

    class_<rgb_pixel>("rgb_pixel")
        .def(init<unsigned char,unsigned char,unsigned char>( (arg("red"),arg("green"),arg("blue")) ))
        .def("__str__", &print_rgb_pixel_str)
        .def("__repr__", &print_rgb_pixel_repr)
        .add_property("red", &rgb_pixel::red)
        .add_property("green", &rgb_pixel::green)
        .add_property("blue", &rgb_pixel::blue);
}

// ----------------------------------------------------------------------------------------