optimization.xml 38.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="stylesheet.xsl"?>

<doc>
   <title>Optimization</title>

   <!-- ************************************************************************* -->

   <body>
      <br/><br/>

         <p>
            This page documents library components that attempt to find the 
Davis King's avatar
Davis King committed
14
            minimum or maximum of a user supplied function.   An introduction
Davis King's avatar
Davis King committed
15
            to the general purpose non-linear optimizers in this section can be
Davis King's avatar
Davis King committed
16
17
18
            found <a href="optimization_ex.cpp.html">here</a>.  For an example
            showing how to use the non-linear least squares routines look 
            <a href="least_squares_ex.cpp.html">here</a>.
19
20
21
22
23
24
25
26
27
         </p>

   </body>

   <!-- ************************************************************************* -->

   <menu width="150">
    <top>
      <section>
28
         <name>General Purpose Optimizers</name>
29
30
31
32
33
34
35
36
         <item>find_min</item> 
         <item>find_min_single_variable</item> 
         <item>find_min_using_approximate_derivatives</item> 
         <item>find_min_bobyqa</item> 
         <item>find_max</item> 
         <item>find_max_single_variable</item> 
         <item>find_max_using_approximate_derivatives</item> 
         <item>find_max_bobyqa</item> 
Davis King's avatar
Davis King committed
37
38
         <item>find_max_trust_region</item> 
         <item>find_min_trust_region</item> 
39
40
41
42
43
44
45
      </section>

      <section>
         <name>Special Purpose Optimizers</name>
         <item>solve_qp_using_smo</item> 
         <item>solve_qp2_using_smo</item> 
         <item>solve_qp3_using_smo</item> 
Davis King's avatar
Davis King committed
46
         <item>solve_qp4_using_smo</item> 
47
         <item>oca</item> 
Davis King's avatar
Davis King committed
48
49
         <item>solve_least_squares</item> 
         <item>solve_least_squares_lm</item> 
50
         <item>solve_trust_region_subproblem</item> 
Davis King's avatar
Davis King committed
51
         <item>max_cost_assignment</item> 
Davis King's avatar
Davis King committed
52
         <item>max_sum_submatrix</item> 
53
         <item>find_max_factor_graph_nmplp</item> 
Davis King's avatar
Davis King committed
54
         <item>find_max_factor_graph_viterbi</item> 
Davis King's avatar
Davis King committed
55
         <item>find_max_factor_graph_potts</item> 
Davis King's avatar
Davis King committed
56
         <item>find_max_parse_cky</item> 
Davis King's avatar
Davis King committed
57
         <item>min_cut</item> 
58
59
60
61
62
63
      </section>

      <section>
         <name>Strategies</name>
         <item>cg_search_strategy</item>
         <item>bfgs_search_strategy</item>
Davis King's avatar
Davis King committed
64
         <item>newton_search_strategy</item>
65
66
67
68
69
70
71
72
73
74
75
76
77
         <item>lbfgs_search_strategy</item>
         <item>objective_delta_stop_strategy</item>
         <item>gradient_norm_stop_strategy</item>
      </section>

      <section>
         <name>Helper Routines</name>
         <item>derivative</item> 
         <item>negate_function</item> 
         <item>make_line_search_function</item> 
         <item>poly_min_extrap</item> 
         <item>lagrange_poly_min_extrap</item> 
         <item>line_search</item> 
Davis King's avatar
Davis King committed
78
79
         <item>graph_cut_score</item> 
         <item>potts_model_score</item> 
Davis King's avatar
Davis King committed
80
         <item>parse_tree_to_string</item> 
Davis King's avatar
Davis King committed
81
         <item>find_trees_not_rooted_with_tag</item> 
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      </section>

    </top>  
   </menu>

   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->
   <!-- ************************************************************************* -->

   <components>
   
   <!-- ************************************************************************* -->
      
      <component>
         <name>derivative</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
            This is a function that takes another function as input and returns
            a function object that numerically computes the derivative of the input function.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>negate_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
            This is a function that takes another function as input and returns
            a function object that computes the negation of the input function.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>make_line_search_function</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This is a function that takes another function f(x) as input and returns
            a function object l(z) = f(start + z*direction).   It is useful for
            turning multi-variable functions into single-variable functions for
            use with the <a href="#line_search">line_search</a> routine.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->
      
      <component>
         <name>poly_min_extrap</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This function finds the 3rd degree polynomial that interpolates a 
            set of points and returns you the minimum of that polynomial.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>lagrange_poly_min_extrap</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            This function finds the second order polynomial that interpolates a 
            set of points and returns you the minimum of that polynomial.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>line_search</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
            Performs a gradient based line search on a given function and returns the input
            that makes the function significantly smaller.
         </description>
                                 
      </component>


   <!-- ************************************************************************* -->

      <component>
         <name>cg_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the Polak-Ribiere conjugate gradient method
                for determining this direction.

                  <p>
                This method uses an amount of memory that is linear in the number
                of variables to be optimized.  So it is capable of handling problems
                with a very large number of variables.  However, it is generally
                not as good as the L-BFGS algorithm (see the 
                <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a> class).
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>bfgs_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the BFGS quasi-newton method for determining 
                this direction.

                  <p>
                This method uses an amount of memory that is quadratic in the number
                of variables to be optimized.  It is generally very effective but 
                if your problem has a very large number of variables then it isn't 
Davis King's avatar
Davis King committed
219
                appropriate.  Instead, you should try the <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a>.
220
221
222
223
224
225
226
227
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

Davis King's avatar
Davis King committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
   <!-- ************************************************************************* -->
      
      <component>
         <name>newton_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular routine 
                is an implementation of the newton method for determining this direction.  
                That means using it requires you to supply a method for
                creating hessian matrices for the problem you are trying to optimize.

               <p>
               Note also that this is actually a helper function for creating 
               <a href="dlib/optimization/optimization_search_strategies_abstract.h.html#newton_search_strategy_obj"
                     >newton_search_strategy_obj</a> objects.  
               </p>

         </description>
Davis King's avatar
Davis King committed
248
249
250
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
251
252
253
                                 
      </component>

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
   <!-- ************************************************************************* -->
      
      <component>
         <name>lbfgs_search_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for determining which direction
                a <a href="#line_search">line search</a> should be carried out along.  This particular object
                is an implementation of the L-BFGS quasi-newton method for determining 
                this direction.

                  <p>
                This method uses an amount of memory that is linear in the number
                of variables to be optimized.  This makes it an excellent method 
                to use when an optimization problem has a large number of variables.
                  </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>objective_delta_stop_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for deciding if an optimization
                algorithm should terminate.   This particular object looks at the 
                change in the objective function from one iteration to the next and 
                bases its decision on how large this change is.  If the change
                is below a user given threshold then the search stops.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>gradient_norm_stop_strategy</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
         <description>
                This object represents a strategy for deciding if an optimization
                algorithm should terminate.   This particular object looks at the 
                norm (i.e. the length) of the current gradient vector and
                stops if it is smaller than a user given threshold.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_min_single_variable</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
             Performs a bound constrained minimization of a nonlinear function.  The 
             function must be of a single variable.  Derivatives are not required.  
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
      <component>
         <name>solve_trust_region_subproblem</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             This function solves the following optimization problem:
<pre>
Minimize: f(p) == 0.5*trans(p)*B*p + trans(g)*p
subject to the following constraint:
   length(p) &lt;= radius
</pre>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
361
362
363
364
365
366
367
368
369
370
371
      <component>
         <name>solve_qp_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b
   subject to the following constraints:
      sum(alpha) == C 
      min(alpha) >= 0 
Davis King's avatar
Davis King committed
372
   Where f is convex.  This means that Q should be symmetric and positive-semidefinite.
373
374
375
376
377
378
</pre>

         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp2_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp2_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha 
   subject to the following constraints:
      sum(alpha) == nu*y.size() 
      0 &lt;= min(alpha) &amp;&amp; max(alpha) &lt;= 1 
      trans(y)*alpha == 0
Davis King's avatar
Davis King committed
393
394
395

   Where all elements of y must be equal to +1 or -1 and f is convex.  
   This means that Q should be symmetric and positive-semidefinite.
Davis King's avatar
Davis King committed
396
397
398
399
400
401
402
403
</pre>
<br/>
                This object implements the strategy used by the LIBSVM tool.  The following papers
                can be consulted for additional details:
               <ul>
                  <li>Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms</li>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
Davis King's avatar
Davis King committed
404
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
Davis King's avatar
Davis King committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
               </ul>

         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp3_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp3_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha + trans(p)*alpha
   subject to the following constraints:
        for all i such that y(i) == +1:  0 &lt;= alpha(i) &lt;= Cp 
        for all i such that y(i) == -1:  0 &lt;= alpha(i) &lt;= Cn 
        trans(y)*alpha == B 

   Where all elements of y must be equal to +1 or -1 and f is convex.  
   This means that Q should be symmetric and positive-semidefinite.
</pre>
<br/>
Davis King's avatar
Davis King committed
430
                This object implements the strategy used by the LIBSVM tool.  The following papers
Davis King's avatar
Davis King committed
431
432
433
434
                can be consulted for additional details:
               <ul>
                  <li>Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector 
                     machines, 2001. Software available at 
Davis King's avatar
Davis King committed
435
                     <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/">http://www.csie.ntu.edu.tw/~cjlin/libsvm</a></li>
Davis King's avatar
Davis King committed
436
437
                  <li>Working Set Selection Using Second Order Information for Training Support Vector Machines by
                     Fan, Chen, and Lin.  In the Journal of Machine Learning Research 2005.</li>
Davis King's avatar
Davis King committed
438
439
440
441
442
443
               </ul>

         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_qp4_using_smo</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_solve_qp_using_smo_abstract.h</spec_file>
         <description>
             This function solves the following quadratic program:
<pre>
   Minimize: f(alpha,lambda) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b + 
                                0.5*trans(lambda)*lambda - trans(lambda)*A*alpha
   subject to the following constraints:
      sum(alpha)  == C 
      min(alpha)  >= 0 
      min(lambda) >= 0
   Where f is convex.  This means that Q should be positive-semidefinite.
</pre>

         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
466
467
468
469
470
471
472
   <!-- ************************************************************************* -->
      
      <component>
         <name>max_cost_assignment</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/max_cost_assignment_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
473
474
            This function is an implementation of the Hungarian algorithm (also know as the Kuhn-Munkres algorithm) which
            runs in O(N^3) time.
Davis King's avatar
Davis King committed
475
476
477
478
            It solves the optimal assignment problem. For example, suppose you have an equal number of workers
            and jobs and you need to decide which workers to assign to which jobs. Some workers are better at 
            certain jobs than others. So you would like to find out how to assign them all to jobs such that 
            overall productivity is maximized. You can use this routine to solve this problem and others like it. 
Davis King's avatar
Davis King committed
479
480
481
482
            <p>
               Note that dlib also contains a <a href="ml.html#structural_assignment_trainer">machine learning</a>
               method for learning the cost function needed to use the Hungarian algorithm.
            </p>
Davis King's avatar
Davis King committed
483

Davis King's avatar
Davis King committed
484
485
486
487
         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
   <!-- ************************************************************************* -->
      
      <component>
         <name>max_sum_submatrix</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/max_sum_submatrix_abstract.h</spec_file>
         <description>
              This function finds the submatrix within a user supplied matrix which has the largest sum.  It then
              zeros out that submatrix and repeats the process until no more maximal submatrices can 
              be found.   
         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
502
503
504
   <!-- ************************************************************************* -->
      
      <component>
505
         <name>find_max_factor_graph_nmplp</name>
Davis King's avatar
Davis King committed
506
         <file>dlib/optimization.h</file>
507
         <spec_file link="true">dlib/optimization/find_max_factor_graph_nmplp_abstract.h</spec_file>
Davis King's avatar
Davis King committed
508
509
510
511
512
513
514
515
516
         <description>
              This function is a tool for approximately solving the MAP problem in a graphical 
              model or factor graph with pairwise potential functions.  That is, it attempts 
              to solve a certain kind of optimization problem which can be defined as follows:
<pre>
   maximize: f(X)
   where X is a set of integer valued variables and f(X) can be written
   as the sum of functions which each involve only two variables from X.
</pre>
Davis King's avatar
Davis King committed
517
518
If the graph is tree-structured then this routine always gives the exact solution to the MAP problem.
However, for graphs with cycles, the solution may be approximate.
Davis King's avatar
Davis King committed
519
520
521
522
523
524
<br/>
<br/>
            This function is an implementation of the NMPLP algorithm introduced in the 
            following paper:
                <blockquote>
                Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations 
Davis King's avatar
Davis King committed
525
                by Amir Globerson and Tommi Jaakkola
Davis King's avatar
Davis King committed
526
527
528
529
530
531
                </blockquote>

         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
532
533
   <!-- ************************************************************************* -->
      
Davis King's avatar
Davis King committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
      <component>
         <name>find_max_parse_cky</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_parse_cky_abstract.h</spec_file>
         <description>
            This function implements the CKY parsing algorithm.  In particular, it
            finds the maximum scoring binary parse tree that parses an input sequence of tokens.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>parse_tree_to_string</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_parse_cky_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
552
            This is a set of functions useful for converting a parse tree output by 
Davis King's avatar
Davis King committed
553
554
555
            <a href="#find_max_parse_cky">find_max_parse_cky</a> into a bracketed string
            suitable for displaying the parse tree.  
         </description>
Davis King's avatar
Davis King committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
                                 
      </component>

   <!-- ************************************************************************* -->

      <component>
         <name>find_trees_not_rooted_with_tag</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_parse_cky_abstract.h</spec_file>
         <description>
              Finds all the largest non-overlapping <a href="#find_max_parse_cky">parse trees</a> 
              in tree that are not rooted with a particular tag.   
              <p>
              This function is useful when you want to cut a parse tree
              into a bunch of sub-trees and you know that the top level of the tree is all
              composed of the same kind of tag.  So if you want to just "slice off" the top
              of the tree where this tag lives then this function is useful for doing that.
              </p>
         </description>
Davis King's avatar
Davis King committed
575
576
577
578
579
                                 
      </component>

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
      <component>
         <name>find_max_factor_graph_viterbi</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/find_max_factor_graph_viterbi_abstract.h</spec_file>
         <description>
            This function is a tool for exactly solving the MAP problem in a chain-structured 
            graphical model or factor graph.   In particular, it is an implementation of the classic Viterbi
            algorithm for finding the maximizing assignment.  In addition to basic first order Markov
            models, this function is also capable of finding the MAP assignment for higher order
            Markov models.
         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
   <!-- ************************************************************************* -->

      <component>
         <name>potts_model_score</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
         <description>
              This routine computes the model score for a Potts problem and a
              candidate labeling.  This score is the quantity maximised
              by the <a href="#find_max_factor_graph_potts">find_max_factor_graph_potts</a>
              routine.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>graph_cut_score</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
         <description>
            This routine computes the score for a candidate graph cut.  This is the 
            quantity minimized by the <a href="#min_cut">min_cut</a> algorithm.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>min_cut</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/min_cut_abstract.h</spec_file>
         <description>
                This is a function object which can be used to find the min cut
                on a graph.
                The implementation is based on the method described in the following
                paper:
                <blockquote>
                    An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
                    Energy Minimization in Vision, by Yuri Boykov and Vladimir Kolmogorov, 
                    in PAMI 2004.
                </blockquote>
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_factor_graph_potts</name>
         <file>dlib/graph_cuts.h</file>
         <spec_file link="true">dlib/graph_cuts/find_max_factor_graph_potts_abstract.h</spec_file>
         <description>
Davis King's avatar
Davis King committed
649
              This is a set of overloaded functions for exactly solving the MAP problem in a Potts
Davis King's avatar
Davis King committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
              model.  This type of model is useful when you have a problem which
              can be modeled as a bunch of binary decisions on some variables,
              but you have some kind of labeling consistency constraint.  This
              means that there is some penalty for giving certain pairs of variables
              different labels.  So in addition to trying to figure out how to best
              label each variable on its own, you have to worry about making the
              labels pairwise consistent in some sense.  The find_max_factor_graph_potts()
              routine can be used to find the most probable/highest scoring
              labeling for this type of model.
              <p>The implementation of this routine is based on the <a href="#min_cut">min_cut</a> object.</p>
         </description>
                                 
      </component>

Davis King's avatar
Davis King committed
664
665
666
667
668
669
670
671
672
673
674
   <!-- ************************************************************************* -->
      
      <component>
         <name>oca</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_oca_abstract.h</spec_file>
         <description>
                This object is a tool for solving the following optimization problem:   
<pre>
   Minimize: f(w) == 0.5*dot(w,w) + C*R(w)

Davis King's avatar
Davis King committed
675
   Where R(w) is a user-supplied convex function and C > 0.  Optionally,
Davis King's avatar
Davis King committed
676
677
   this object can also add non-negativity constraints to some or all
   of the elements of w.
Davis King's avatar
Davis King committed
678
679
680
681
682
683
684
685
</pre>
<br/>
<br/>

                For a detailed discussion you should consult the following papers
                from the Journal of Machine Learning Research:
                <blockquote>
                    Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
Davis King's avatar
Davis King committed
686
                      by  Vojtech Franc, Soren Sonnenburg; 10(Oct):2157--2192, 2009. 
Davis King's avatar
Davis King committed
687
688
689
                </blockquote>
                <blockquote>
                    Bundle Methods for Regularized Risk Minimization
Davis King's avatar
Davis King committed
690
                      by Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, Quoc V. Le; 11(Jan):311-365, 2010. 
Davis King's avatar
Davis King committed
691
692
693
694
695
696
                </blockquote>

         </description>
                                 
      </component>

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
   <!-- ************************************************************************* -->
      
      
      <component>
         <name>find_min_bobyqa</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_bobyqa_abstract.h</spec_file>
         <description>
            This function defines the dlib interface to the BOBYQA software developed by M.J.D Powell.
            BOBYQA is a method for optimizing a function in the absence of derivative information.  
            Powell described it as a method that seeks the least value of a function of many 
            variables, by applying a trust region method that forms quadratic models by 
            interpolation.  There is usually some freedom in the interpolation conditions, 
            which is taken up by minimizing the Frobenius norm of the change to the second 
            derivative of the model, beginning with the zero matrix. The values of the variables 
            are constrained by upper and lower bounds.  

            <p>
            The following paper, published in 2009 by Powell, describes the
            detailed working of the BOBYQA algorithm.  

               <blockquote>
               The BOBYQA algorithm for bound constrained optimization 
               without derivatives by M.J.D. Powell
               </blockquote>
            </p>

            <p>
               Note that BOBYQA only works on functions of two or more variables.  So if you need to perform 
               derivative-free optimization on a function of a single variable 
               then you should use the <a href="#find_min_single_variable">find_min_single_variable</a>
               function.
            </p>

         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_bobyqa</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_bobyqa_abstract.h</spec_file>
         <description>
            This function is identical to the <a href="#find_min_bobyqa">find_min_bobyqa</a> routine 
            except that it negates the objective function before performing optimization.  
            Thus this function will attempt to find the maximizer of the objective rather than 
            the minimizer.
            <p>
               Note that BOBYQA only works on functions of two or more variables.  So if you need to perform 
               derivative-free optimization on a function of a single variable 
               then you should use the <a href="#find_max_single_variable">find_max_single_variable</a>
               function.
            </p>
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
            <example>model_selection_ex.cpp.html</example>
         </examples>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_min_using_approximate_derivatives</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This version doesn't take a gradient function but instead numerically approximates 
             the gradient.
         </description>
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
                                 
      </component>
Davis King's avatar
Davis King committed
781
782
783

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
784
785
786
787
788
789
790
791
792
793
794
795
      <component>
         <name>solve_least_squares</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_least_squares_abstract.h</spec_file>
         <description>
            This is a function for solving non-linear least squares problems.  It uses a method
            which combines the traditional Levenberg-Marquardt technique with a quasi-newton
            approach.  It is appropriate for large residual problems (i.e. problems where the
            terms in the least squares function, the residuals, don't go to zero but remain
            large at the solution)
         </description>
                                 
Davis King's avatar
Davis King committed
796
797
798
         <examples>
            <example>least_squares_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>solve_least_squares_lm</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_least_squares_abstract.h</spec_file>
         <description>
            This is a function for solving non-linear least squares problems.  It uses 
            the traditional Levenberg-Marquardt technique. 
            It is appropriate for small residual problems (i.e. problems where the
            terms in the least squares function, the residuals, go to zero at the solution)
         </description>
                                 
Davis King's avatar
Davis King committed
814
815
816
         <examples>
            <example>least_squares_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
817
818
819
820
      </component>

   <!-- ************************************************************************* -->
      
Davis King's avatar
Davis King committed
821
822
823
824
825
826
827
828
      <component>
         <name>find_min_trust_region</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             Performs an unconstrained minimization of a nonlinear function using 
             a trust region method.
         </description>
Davis King's avatar
Davis King committed
829
830
831
         <examples>
            <example>optimization_ex.cpp.html</example>
         </examples>
Davis King's avatar
Davis King committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_trust_region</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_trust_region_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             a trust region method.
         </description>
                                 
      </component>
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_single_variable</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
         <description>
             Performs a bound constrained maximization of a nonlinear function.  The 
             function must be of a single variable.  Derivatives are not required.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->
      
      <component>
         <name>find_max_using_approximate_derivatives</name>
         <file>dlib/optimization.h</file>
         <spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
         <description>
             Performs an unconstrained maximization of a nonlinear function using 
             some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
             This version doesn't take a gradient function but instead numerically approximates 
             the gradient.
         </description>
                                 
      </component>

   <!-- ************************************************************************* -->

Davis King's avatar
Davis King committed
891

892
893
894
895
896
897
898
   </components>

   <!-- ************************************************************************* -->


</doc>