layers.h 8.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNn_LAYERS_H_
#define DLIB_DNn_LAYERS_H_

#include "layers_abstract.h"
#include "tensor.h"
#include "core.h"
#include <iostream>
#include <string>
Davis King's avatar
Davis King committed
11
12
#include "../rand.h"
#include "../string.h"
13
#include "tensor_tools.h"
14
15
16
17
18
19
20
21
22
23
24
25
26


namespace dlib
{

// ----------------------------------------------------------------------------------------

    class con_
    {
    public:
        con_()
        {}

Davis King's avatar
Davis King committed
27
28
        template <typename SUBNET>
        void setup (const SUBNET& sub)
29
30
31
32
        {
            // TODO
        }

Davis King's avatar
Davis King committed
33
34
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
35
36
37
38
        {
            // TODO
        } 

Davis King's avatar
Davis King committed
39
        template <typename SUBNET>
40
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
41
42
43
44
45
46
47
48
49
50
51
52
        {
            // TODO
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

    private:

        resizable_tensor params;
    };

Davis King's avatar
Davis King committed
53
54
    template <typename SUBNET>
    using con = add_layer<con_, SUBNET>;
55
56
57
58
59
60

// ----------------------------------------------------------------------------------------

    class fc_
    {
    public:
Davis King's avatar
Davis King committed
61
        fc_() : num_outputs(1), num_inputs(0)
62
63
64
        {
        }

65
66
        explicit fc_(
            unsigned long num_outputs_
Davis King's avatar
Davis King committed
67
        ) : num_outputs(num_outputs_), num_inputs(0)
68
69
70
71
72
73
        {
        }

        unsigned long get_num_outputs (
        ) const { return num_outputs; }

Davis King's avatar
Davis King committed
74
75
        template <typename SUBNET>
        void setup (const SUBNET& sub)
76
77
78
79
        {
            num_inputs = sub.get_output().nr()*sub.get_output().nc()*sub.get_output().k();
            params.set_size(num_inputs, num_outputs);

80
            dlib::rand rnd("fc_"+cast_to_string(num_outputs));
81
82
83
            randomize_parameters(params, num_inputs+num_outputs, rnd);
        }

Davis King's avatar
Davis King committed
84
85
        template <typename SUBNET>
        void forward(const SUBNET& sub, resizable_tensor& output)
86
        {
87
            output.set_size(sub.get_output().num_samples(), num_outputs);
88

89
            tt::gemm(0,output, 1,sub.get_output(),false, params,false);
90
91
        } 

Davis King's avatar
Davis King committed
92
        template <typename SUBNET>
93
        void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
94
95
        {
            // compute the gradient of the parameters.  
96
            tt::gemm(0,params_grad, 1,sub.get_output(),true, gradient_input,false);
97
98

            // compute the gradient for the data
99
            tt::gemm(1,sub.get_gradient_input(), 1,gradient_input,false, params,true);
100
101
102
103
104
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        friend void serialize(const fc_& item, std::ostream& out)
        {
            serialize("fc_", out);
            serialize(item.num_outputs, out);
            serialize(item.num_inputs, out);
            serialize(item.params, out);
        }

        friend void deserialize(fc_& item, std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "fc_")
                throw serialization_error("Unexpected version found while deserializing dlib::fc_.");
            deserialize(item.num_outputs, in);
            deserialize(item.num_inputs, in);
            deserialize(item.params, in);
        }

124
125
126
127
128
129
130
131
    private:

        unsigned long num_outputs;
        unsigned long num_inputs;
        resizable_tensor params;
    };


Davis King's avatar
Davis King committed
132
133
    template <typename SUBNET>
    using fc = add_layer<fc_, SUBNET>;
134
135
136
137
138
139
140
141
142
143

// ----------------------------------------------------------------------------------------

    class relu_
    {
    public:
        relu_() 
        {
        }

Davis King's avatar
Davis King committed
144
145
        template <typename SUBNET>
        void setup (const SUBNET& sub)
146
147
148
        {
        }

149
        void forward_inplace(const tensor& input, tensor& output)
150
        {
151
            tt::relu(output, input);
152
153
        } 

154
155
156
157
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
158
            tensor& 
159
        )
160
        {
161
            tt::relu_gradient(data_grad, computed_output, gradient_input);
162
163
164
165
166
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

Davis King's avatar
Davis King committed
167
        friend void serialize(const relu_& , std::ostream& out)
168
        {
169
            serialize("relu_", out);
170
171
        }

Davis King's avatar
Davis King committed
172
        friend void deserialize(relu_& , std::istream& in)
173
        {
174
175
176
177
            std::string version;
            deserialize(version, in);
            if (version != "relu_")
                throw serialization_error("Unexpected version found while deserializing dlib::relu_.");
178
179
        }

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    private:
        resizable_tensor params;
    };


    template <typename SUBNET>
    using relu = add_layer<relu_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class sig_
    {
    public:
        sig_() 
        {
        }

        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::sigmoid(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::sigmoid_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const sig_& , std::ostream& out)
        {
            serialize("sig_", out);
        }

        friend void deserialize(sig_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "sig_")
                throw serialization_error("Unexpected version found while deserializing dlib::sig_.");
        }
232
233

    private:
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        resizable_tensor params;
    };


    template <typename SUBNET>
    using sig = add_layer<sig_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class htan_
    {
    public:
        htan_() 
        {
        }

        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::tanh(output, input);
        } 
259

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::tanh_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const htan_& , std::ostream& out)
        {
            serialize("htan_", out);
        }

        friend void deserialize(htan_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "htan_")
                throw serialization_error("Unexpected version found while deserializing dlib::htan_.");
        }

    private:
287
288
289
        resizable_tensor params;
    };

290

Davis King's avatar
Davis King committed
291
    template <typename SUBNET>
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    using htan = add_layer<htan_, SUBNET>;

// ----------------------------------------------------------------------------------------

    class softmax_
    {
    public:
        softmax_() 
        {
        }

        template <typename SUBNET>
        void setup (const SUBNET& sub)
        {
        }

        void forward_inplace(const tensor& input, tensor& output)
        {
            tt::softmax(output, input);
        } 

        void backward_inplace(
            const tensor& computed_output,
            const tensor& gradient_input, 
            tensor& data_grad, 
            tensor& 
        )
        {
            tt::softmax_gradient(data_grad, computed_output, gradient_input);
        }

        const tensor& get_layer_params() const { return params; }
        tensor& get_layer_params() { return params; }

        friend void serialize(const softmax_& , std::ostream& out)
        {
            serialize("softmax_", out);
        }

        friend void deserialize(softmax_& , std::istream& in)
        {
            std::string version;
            deserialize(version, in);
            if (version != "softmax_")
                throw serialization_error("Unexpected version found while deserializing dlib::softmax_.");
        }

    private:
        resizable_tensor params;
    };

    template <typename SUBNET>
    using softmax = add_layer<softmax_, SUBNET>;
345
346
347
348
349

// ----------------------------------------------------------------------------------------

}

350
#endif // DLIB_DNn_LAYERS_H_
351
352