"src/array/vscode:/vscode.git/clone" did not exist on "5cff2f1cb2e3e307617bfa5b225df05555effb4b"
svm_c_trainer.cpp 8.33 KB
Newer Older
1

2
#include "testing_results.h"
3
4
5
6
#include <boost/python.hpp>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include "serialize_pickle.h"
7
#include <dlib/svm_threaded.h>
Davis King's avatar
Davis King committed
8
#include "pyassert.h"
9
#include <boost/python/args.hpp>
10
11
12
13
14
15

using namespace dlib;
using namespace std;
using namespace boost::python;

typedef matrix<double,0,1> sample_type; 
Davis King's avatar
Davis King committed
16
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
17

Davis King's avatar
Davis King committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
template <typename trainer_type>
typename trainer_type::trained_function_type train (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& samples,
    const std::vector<double>& labels
)
{
    pyassert(is_binary_classification_problem(samples,labels), "Invalid inputs");
    return trainer.train(samples, labels);
}

template <typename trainer_type>
void set_epsilon ( trainer_type& trainer, double eps)
{
    pyassert(eps > 0, "epsilon must be > 0");
    trainer.set_epsilon(eps);
}

template <typename trainer_type>
double get_epsilon ( const trainer_type& trainer) { return trainer.get_epsilon(); }


template <typename trainer_type>
void set_cache_size ( trainer_type& trainer, long cache_size)
{
    pyassert(cache_size > 0, "cache size must be > 0");
    trainer.set_cache_size(cache_size);
}
46

Davis King's avatar
Davis King committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
template <typename trainer_type>
long get_cache_size ( const trainer_type& trainer) { return trainer.get_cache_size(); }


template <typename trainer_type>
void set_c ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c(C);
}

template <typename trainer_type>
void set_c_class1 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class1(C);
}

template <typename trainer_type>
void set_c_class2 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class2(C);
}
71

Davis King's avatar
Davis King committed
72
73
74
75
76
77
78
79
80
81
82
83
84
template <typename trainer_type>
double get_c_class1 ( const trainer_type& trainer) { return trainer.get_c_class1(); }
template <typename trainer_type>
double get_c_class2 ( const trainer_type& trainer) { return trainer.get_c_class2(); }

template <typename trainer_type>
class_<trainer_type> setup_trainer (
    const std::string& name
)
{
    return class_<trainer_type>(name.c_str())
        .def("train", train<trainer_type>)
        .def("set_c", set_c<trainer_type>)
85
86
        .add_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
        .add_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>)
Davis King's avatar
Davis King committed
87
88
89
90
91
92
93
94
95
96
        .add_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
}

template <typename trainer_type>
class_<trainer_type> setup_trainer2 (
    const std::string& name
)
{

    return setup_trainer<trainer_type>(name)
97
        .add_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
Davis King's avatar
Davis King committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
}

void set_gamma (
    svm_c_trainer<radial_basis_kernel<sample_type> >& trainer,
    double gamma
)
{
    pyassert(gamma > 0, "gamma must be > 0");
    trainer.set_kernel(radial_basis_kernel<sample_type>(gamma));
}

double get_gamma (
    const svm_c_trainer<radial_basis_kernel<sample_type> >& trainer
)
{
    return trainer.get_kernel().gamma;
}

void set_gamma_sparse (
    svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> >& trainer,
    double gamma
119
120
)
{
Davis King's avatar
Davis King committed
121
122
123
    pyassert(gamma > 0, "gamma must be > 0");
    trainer.set_kernel(sparse_radial_basis_kernel<sparse_vect>(gamma));
}
124

Davis King's avatar
Davis King committed
125
126
127
128
129
double get_gamma_sparse (
    const svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> >& trainer
)
{
    return trainer.get_kernel().gamma;
130
131
}

132
133
134
135
136
137
138
139
140
// ----------------------------------------------------------------------------------------

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
141
    const unsigned long folds
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    return cross_validate_trainer(trainer, x, y, folds);
}

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer_t (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
    const unsigned long folds,
    const unsigned long num_threads
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    pyassert(1 < num_threads, "The number of threads specified must not be zero.");
    return cross_validate_trainer_threaded(trainer, x, y, folds, num_threads);
}
165

Davis King's avatar
Davis King committed
166
167
// ----------------------------------------------------------------------------------------

168
169
void bind_svm_c_trainer()
{
170
    using boost::python::arg;
Davis King's avatar
Davis King committed
171
172
173
174
    {
        typedef svm_c_trainer<radial_basis_kernel<sample_type> > T;
        setup_trainer2<T>("svm_c_trainer_radial_basis")
            .add_property("gamma", get_gamma, set_gamma);
175
176
177
178
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
179
180
181
182
183
    }

    {
        typedef svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
        setup_trainer2<T>("svm_c_trainer_sparse_radial_basis")
184
            .add_property("gamma", get_gamma_sparse, set_gamma_sparse);
185
186
187
188
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
189
190
191
192
193
    }

    {
        typedef svm_c_trainer<histogram_intersection_kernel<sample_type> > T;
        setup_trainer2<T>("svm_c_trainer_histogram_intersection");
194
195
196
197
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
198
199
200
201
202
    }

    {
        typedef svm_c_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
        setup_trainer2<T>("svm_c_trainer_sparse_histogram_intersection");
203
204
205
206
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
207
208
209
210
211
212
213
214
215
216
217
    }

    {
        typedef svm_c_linear_trainer<linear_kernel<sample_type> > T;
        setup_trainer<T>("svm_c_trainer_linear")
            .add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

218
219
220
221
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
222
223
224
225
226
227
228
229
230
231
232
    }

    {
        typedef svm_c_linear_trainer<sparse_linear_kernel<sparse_vect> > T;
        setup_trainer<T>("svm_c_trainer_sparse_linear")
            .add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

233
234
235
236
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
237
    }
238
239
240
}