learning_to_track_ex.cpp 5.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*

*/


#include <iostream>
#include <dlib/svm_threaded.h>
#include <dlib/rand.h>

using namespace std;
using namespace dlib;

// ----------------------------------------------------------------------------------------

class detection
{

public:
    typedef class track track_type;

    matrix<double,0,1> measurements;
};

class track
{

public:
    // This type should be a dlib::matrix capable of storing column vectors or an
    // unsorted sparse vector type as defined in dlib/svm/sparse_vector_abstract.h.
    typedef matrix<double,0,1> feature_vector_type;

    track()
    {
        time_since_last_association = 0;
    }

    void get_similarity_features (
        const detection& det,
        feature_vector_type& feats
    ) const
    {
        feats = abs(last_measurements - det.measurements);
    }

    void update_track (
        const detection& det
    )
    {
        last_measurements = det.measurements;
        time_since_last_association = 0;
    }

    void propagate_track (
    )
    {
        ++time_since_last_association;
    }

    matrix<double,0,1> last_measurements;
    unsigned long time_since_last_association;
};

// ----------------------------------------------------------------------------------------

typedef std::vector<labeled_detection<detection> > detections_at_single_time_step;
typedef std::vector<detections_at_single_time_step> track_history;

dlib::rand rnd;
const long num_objects = 4;
const long num_properties = 6;
std::vector<matrix<double,0,1> > object_properties(num_objects);

void initialize_object_properties()
{
    for (unsigned long i = 0; i < object_properties.size(); ++i)
        object_properties[i] = randm(num_properties,1,rnd);
}

// ----------------------------------------------------------------------------------------

track_history make_random_tracking_data_for_training()
{
    track_history data;


    const int num_time_steps = 100;
    for (int i = 0; i < num_time_steps; ++i)
    {
        detections_at_single_time_step dets(3);
        dets[0].det.measurements = object_properties[0] + randm(num_properties,1,rnd)*0.1;
        dets[0].label = 0;

        dets[1].det.measurements = object_properties[1] + randm(num_properties,1,rnd)*0.1;
        dets[1].label = 1;

        dets[2].det.measurements = object_properties[2] + randm(num_properties,1,rnd)*0.1;
        dets[2].label = 2;

        data.push_back(dets);
    }

    for (int i = 0; i < num_time_steps; ++i)
    {
        detections_at_single_time_step dets(2);
        dets[0].det.measurements = object_properties[0] + randm(num_properties,1,rnd)*0.1;
        dets[0].label = 0;

        dets[1].det.measurements = object_properties[3] + randm(num_properties,1,rnd)*0.1;
        dets[1].label = 3;

        data.push_back(dets);
    }

    return data;
}

// ----------------------------------------------------------------------------------------

std::vector<detection> make_random_detections(unsigned long num_dets)
{
    std::vector<detection> dets(num_dets);
    for (unsigned long i = 0; i < dets.size(); ++i)
    {
        dets[i].measurements = object_properties[i] + randm(num_properties,1,rnd)*0.1;
    }
    return dets;
}

// ----------------------------------------------------------------------------------------

int main()
{
    initialize_object_properties();


    std::vector<track_history> data;
    data.push_back(make_random_tracking_data_for_training());
    data.push_back(make_random_tracking_data_for_training());
    data.push_back(make_random_tracking_data_for_training());
    data.push_back(make_random_tracking_data_for_training());
    data.push_back(make_random_tracking_data_for_training());


    structural_track_association_trainer trainer;
    trainer.be_verbose();
    trainer.set_c(100);

    track_association_function<detection> assoc = trainer.train(data);

    cout << "accuracy on training data: "<< test_track_association_function(assoc, data) << endl;
    cout << "cross validation: "<< cross_validate_track_association_trainer(trainer, data, 5) << endl;

    std::vector<detection> dets;
    std::vector<track> tracks;

    cout << "number of tracks: "<< tracks.size() << endl;
    dets = make_random_detections(3);
    assoc(tracks, dets);
    cout << "number of tracks: "<< tracks.size() << endl;

    dets = make_random_detections(3);
    assoc(tracks, dets);
    cout << "number of tracks: "<< tracks.size() << endl;

    dets = make_random_detections(4);
    assoc(tracks, dets);
    cout << "number of tracks: "<< tracks.size() << endl;

    dets = make_random_detections(3);
    assoc(tracks, dets);
    cout << "number of tracks: "<< tracks.size() << endl;
    for (unsigned long i = 0; i < tracks.size(); ++i)
        cout << "   time since last association: "<< tracks[i].time_since_last_association << endl;

    dets = make_random_detections(3);
    assoc(tracks, dets);
    cout << "number of tracks: "<< tracks.size() << endl;
    for (unsigned long i = 0; i < tracks.size(); ++i)
        cout << "   time since last association: "<< tracks[i].time_since_last_association << endl;


    ofstream fout("track_assoc.svm", ios::binary);
    serialize(assoc, fout);
    fout.close();

    ifstream fin("track_assoc.svm", ios::binary);
    deserialize(assoc, fin);
}

// ----------------------------------------------------------------------------------------