simple_object_detector_py.h 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__
#define DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>

namespace dlib
{
    typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;

16
17
18
19
    inline void split_rect_detections (
        std::vector<rect_detection>& rect_detections,
        std::vector<rectangle>& rectangles,
        std::vector<double>& detection_confidences,
20
        std::vector<double>& weight_indices
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    )
    {
        rectangles.clear();
        detection_confidences.clear();
        weight_indices.clear();

        for (unsigned long i = 0; i < rect_detections.size(); ++i)
        {
            rectangles.push_back(rect_detections[i].rect);
            detection_confidences.push_back(rect_detections[i].detection_confidence);
            weight_indices.push_back(rect_detections[i].weight_index);
        }
    }

Jack Culpepper's avatar
Jack Culpepper committed
35
36

    inline std::vector<dlib::rectangle> run_detector_with_upscale1 (
37
38
        dlib::simple_object_detector& detector,
        boost::python::object img,
39
        const unsigned int upsampling_amount,
40
        const double adjust_threshold,
41
        std::vector<double>& detection_confidences,
42
        std::vector<double>& weight_indices
43
44
45
46
    )
    {
        pyramid_down<2> pyr;

47
48
49
        std::vector<rectangle> rectangles;
        std::vector<rect_detection> rect_detections;

50
51
52
53
54
        if (is_gray_python_image(img))
        {
            array2d<unsigned char> temp;
            if (upsampling_amount == 0)
            {
55
                detector(numpy_gray_image(img), rect_detections, adjust_threshold);
56
57
58
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
59
60
61
62
63
64
65
66
67
68
69
            }
            else
            {
                pyramid_up(numpy_gray_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

70
                detector(temp, rect_detections, adjust_threshold);
71
72
73
74
75
76
77
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
78
79
80
81
82
83
84
            }
        }
        else if (is_rgb_python_image(img))
        {
            array2d<rgb_pixel> temp;
            if (upsampling_amount == 0)
            {
85
                detector(numpy_rgb_image(img), rect_detections, adjust_threshold);
86
87
88
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
89
90
91
92
93
94
95
96
97
98
99
            }
            else
            {
                pyramid_up(numpy_rgb_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

100
                detector(temp, rect_detections, adjust_threshold);
101
102
103
104
105
106
107
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
108
109
110
111
112
113
114
115
            }
        }
        else
        {
            throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
        }
    }

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    inline std::vector<dlib::rectangle> run_detectors_with_upscale1 (
        std::vector<simple_object_detector >& detectors,
        boost::python::object img,
        const unsigned int upsampling_amount,
        const double adjust_threshold,
        std::vector<double>& detection_confidences,
        std::vector<double>& weight_indices
    )
    {
        pyramid_down<2> pyr;

        std::vector<rectangle> rectangles;
        std::vector<rect_detection> rect_detections;

        if (is_gray_python_image(img))
        {
            array2d<unsigned char> temp;
            if (upsampling_amount == 0)
            {
                evaluate_detectors(detectors, numpy_gray_image(img), rect_detections, adjust_threshold);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
            }
            else
            {
                pyramid_up(numpy_gray_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

                evaluate_detectors(detectors, temp, rect_detections, adjust_threshold);
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
            }
        }
        else if (is_rgb_python_image(img))
        {
            array2d<rgb_pixel> temp;
            if (upsampling_amount == 0)
            {
                evaluate_detectors(detectors, numpy_rgb_image(img), rect_detections, adjust_threshold);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
            }
            else
            {
                pyramid_up(numpy_rgb_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

                evaluate_detectors(detectors, temp, rect_detections, adjust_threshold);
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
            }
        }
        else
        {
            throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
        }
    }

Jack Culpepper's avatar
Jack Culpepper committed
196
197
198
199
    inline std::vector<dlib::rectangle> run_detector_with_upscale2 (
        dlib::simple_object_detector& detector,
        boost::python::object img,
        const unsigned int upsampling_amount
200

Jack Culpepper's avatar
Jack Culpepper committed
201
202
203
204
    )
    {
        std::vector<double> detection_confidences;
        std::vector<double> weight_indices;
205
        const double adjust_threshold = 0.0;
Jack Culpepper's avatar
Jack Culpepper committed
206
207

        return run_detector_with_upscale1(detector, img, upsampling_amount,
208
                                          adjust_threshold,
Jack Culpepper's avatar
Jack Culpepper committed
209
210
211
                                          detection_confidences, weight_indices);
    }

212
    inline boost::python::tuple run_rect_detector (
Jack Culpepper's avatar
Jack Culpepper committed
213
214
        dlib::simple_object_detector& detector,
        boost::python::object img,
215
216
        const unsigned int upsampling_amount,
        const double adjust_threshold)
217
218
219
220
221
222
223
    {
        boost::python::tuple t;

        std::vector<double> detection_confidences;
        std::vector<double> weight_indices;
        std::vector<rectangle> rectangles;

Jack Culpepper's avatar
Jack Culpepper committed
224
        rectangles = run_detector_with_upscale1(detector, img, upsampling_amount,
225
                                                adjust_threshold,
Jack Culpepper's avatar
Jack Culpepper committed
226
                                                detection_confidences, weight_indices);
227
228
229
230
231

        return boost::python::make_tuple(rectangles,
                                         detection_confidences, weight_indices);
    }

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    inline boost::python::tuple run_multiple_rect_detectors (
        boost::python::list& detectors,
        boost::python::object img,
        const unsigned int upsampling_amount,
        const double adjust_threshold)
    {
        boost::python::tuple t;

        std::vector<simple_object_detector > vector_detectors;
        const unsigned long num_detectors = len(detectors);
        // Now copy the data into dlib based objects.
        for (unsigned long i = 0; i < num_detectors; ++i)
        {
            vector_detectors.push_back(boost::python::extract<simple_object_detector >(detectors[i]));
        }
        
        std::vector<double> detection_confidences;
        std::vector<double> weight_indices;
        std::vector<rectangle> rectangles;

        rectangles = run_detectors_with_upscale1(vector_detectors, img, upsampling_amount,
                                                adjust_threshold,
                                                detection_confidences, weight_indices);

        return boost::python::make_tuple(rectangles,
                                         detection_confidences, weight_indices);
    }



262
263
264
265
266
267
268
269
270
    struct simple_object_detector_py
    {
        simple_object_detector detector;
        unsigned int upsampling_amount;

        simple_object_detector_py() {}
        simple_object_detector_py(simple_object_detector& _detector, unsigned int _upsampling_amount) :
            detector(_detector), upsampling_amount(_upsampling_amount) {}

271
272
273
        std::vector<dlib::rectangle> run_detector1 (boost::python::object img,
                                                    const unsigned int upsampling_amount_)
        {
Jack Culpepper's avatar
Jack Culpepper committed
274
            return run_detector_with_upscale2(detector, img, upsampling_amount_);
275
        }
276
277

        std::vector<dlib::rectangle> run_detector2 (boost::python::object img)
278
        {
Jack Culpepper's avatar
Jack Culpepper committed
279
            return run_detector_with_upscale2(detector, img, upsampling_amount);
280
281
282
        }


283
284
285
286
    };
}

#endif // DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__