simple_object_detector_py.h 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// Copyright (C) 2014  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__
#define DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__

#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>

11
12
namespace py = pybind11;

13
14
15
16
namespace dlib
{
    typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;

17
18
19
20
    inline void split_rect_detections (
        std::vector<rect_detection>& rect_detections,
        std::vector<rectangle>& rectangles,
        std::vector<double>& detection_confidences,
21
        std::vector<double>& weight_indices
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    )
    {
        rectangles.clear();
        detection_confidences.clear();
        weight_indices.clear();

        for (unsigned long i = 0; i < rect_detections.size(); ++i)
        {
            rectangles.push_back(rect_detections[i].rect);
            detection_confidences.push_back(rect_detections[i].detection_confidence);
            weight_indices.push_back(rect_detections[i].weight_index);
        }
    }

Jack Culpepper's avatar
Jack Culpepper committed
36
37

    inline std::vector<dlib::rectangle> run_detector_with_upscale1 (
38
        dlib::simple_object_detector& detector,
39
        py::object img,
40
        const unsigned int upsampling_amount,
41
        const double adjust_threshold,
42
        std::vector<double>& detection_confidences,
43
        std::vector<double>& weight_indices
44
45
46
47
    )
    {
        pyramid_down<2> pyr;

48
49
50
        std::vector<rectangle> rectangles;
        std::vector<rect_detection> rect_detections;

51
52
53
54
55
        if (is_gray_python_image(img))
        {
            array2d<unsigned char> temp;
            if (upsampling_amount == 0)
            {
56
                detector(numpy_gray_image(img), rect_detections, adjust_threshold);
57
58
59
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
60
61
62
63
64
65
66
67
68
69
70
            }
            else
            {
                pyramid_up(numpy_gray_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

71
                detector(temp, rect_detections, adjust_threshold);
72
73
74
75
76
77
78
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
79
80
81
82
83
84
85
            }
        }
        else if (is_rgb_python_image(img))
        {
            array2d<rgb_pixel> temp;
            if (upsampling_amount == 0)
            {
86
                detector(numpy_rgb_image(img), rect_detections, adjust_threshold);
87
88
89
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
90
91
92
93
94
95
96
97
98
99
100
            }
            else
            {
                pyramid_up(numpy_rgb_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

101
                detector(temp, rect_detections, adjust_threshold);
102
103
104
105
106
107
108
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
109
110
111
112
113
114
115
116
            }
        }
        else
        {
            throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
        }
    }

117
118
    inline std::vector<dlib::rectangle> run_detectors_with_upscale1 (
        std::vector<simple_object_detector >& detectors,
119
        py::object img,
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        const unsigned int upsampling_amount,
        const double adjust_threshold,
        std::vector<double>& detection_confidences,
        std::vector<double>& weight_indices
    )
    {
        pyramid_down<2> pyr;

        std::vector<rectangle> rectangles;
        std::vector<rect_detection> rect_detections;

        if (is_gray_python_image(img))
        {
            array2d<unsigned char> temp;
            if (upsampling_amount == 0)
            {
                evaluate_detectors(detectors, numpy_gray_image(img), rect_detections, adjust_threshold);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
            }
            else
            {
                pyramid_up(numpy_gray_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

                evaluate_detectors(detectors, temp, rect_detections, adjust_threshold);
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
            }
        }
        else if (is_rgb_python_image(img))
        {
            array2d<rgb_pixel> temp;
            if (upsampling_amount == 0)
            {
                evaluate_detectors(detectors, numpy_rgb_image(img), rect_detections, adjust_threshold);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);
                return rectangles;
            }
            else
            {
                pyramid_up(numpy_rgb_image(img), temp, pyr);
                unsigned int levels = upsampling_amount-1;
                while (levels > 0)
                {
                    levels--;
                    pyramid_up(temp);
                }

                evaluate_detectors(detectors, temp, rect_detections, adjust_threshold);
                for (unsigned long i = 0; i < rect_detections.size(); ++i)
                    rect_detections[i].rect = pyr.rect_down(rect_detections[i].rect,
                                                            upsampling_amount);
                split_rect_detections(rect_detections, rectangles,
                                      detection_confidences, weight_indices);

                return rectangles;
            }
        }
        else
        {
            throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
        }
    }

Jack Culpepper's avatar
Jack Culpepper committed
197
198
    inline std::vector<dlib::rectangle> run_detector_with_upscale2 (
        dlib::simple_object_detector& detector,
199
        py::object img,
Jack Culpepper's avatar
Jack Culpepper committed
200
        const unsigned int upsampling_amount
201

Jack Culpepper's avatar
Jack Culpepper committed
202
203
204
205
    )
    {
        std::vector<double> detection_confidences;
        std::vector<double> weight_indices;
206
        const double adjust_threshold = 0.0;
Jack Culpepper's avatar
Jack Culpepper committed
207
208

        return run_detector_with_upscale1(detector, img, upsampling_amount,
209
                                          adjust_threshold,
Jack Culpepper's avatar
Jack Culpepper committed
210
211
212
                                          detection_confidences, weight_indices);
    }

213
    inline py::tuple run_rect_detector (
Jack Culpepper's avatar
Jack Culpepper committed
214
        dlib::simple_object_detector& detector,
215
        py::object img,
216
217
        const unsigned int upsampling_amount,
        const double adjust_threshold)
218
    {
219
        py::tuple t;
220
221
222
223
224

        std::vector<double> detection_confidences;
        std::vector<double> weight_indices;
        std::vector<rectangle> rectangles;

Jack Culpepper's avatar
Jack Culpepper committed
225
        rectangles = run_detector_with_upscale1(detector, img, upsampling_amount,
226
                                                adjust_threshold,
Jack Culpepper's avatar
Jack Culpepper committed
227
                                                detection_confidences, weight_indices);
228

229
230
        return py::make_tuple(rectangles,
                              detection_confidences, weight_indices);
231
232
    }

233
234
235
    inline py::tuple run_multiple_rect_detectors (
        py::list& detectors,
        py::object img,
236
237
238
        const unsigned int upsampling_amount,
        const double adjust_threshold)
    {
239
        py::tuple t;
240
241
242
243
244
245

        std::vector<simple_object_detector > vector_detectors;
        const unsigned long num_detectors = len(detectors);
        // Now copy the data into dlib based objects.
        for (unsigned long i = 0; i < num_detectors; ++i)
        {
246
          vector_detectors.push_back(detectors[i].cast<simple_object_detector >());
247
        }
248

249
250
251
252
253
254
255
256
        std::vector<double> detection_confidences;
        std::vector<double> weight_indices;
        std::vector<rectangle> rectangles;

        rectangles = run_detectors_with_upscale1(vector_detectors, img, upsampling_amount,
                                                adjust_threshold,
                                                detection_confidences, weight_indices);

257
258
        return py::make_tuple(rectangles,
                              detection_confidences, weight_indices);
259
260
261
262
    }



263
264
265
266
267
268
269
270
271
    struct simple_object_detector_py
    {
        simple_object_detector detector;
        unsigned int upsampling_amount;

        simple_object_detector_py() {}
        simple_object_detector_py(simple_object_detector& _detector, unsigned int _upsampling_amount) :
            detector(_detector), upsampling_amount(_upsampling_amount) {}

272
        std::vector<dlib::rectangle> run_detector1 (py::object img,
273
274
                                                    const unsigned int upsampling_amount_)
        {
Jack Culpepper's avatar
Jack Culpepper committed
275
            return run_detector_with_upscale2(detector, img, upsampling_amount_);
276
        }
277

278
        std::vector<dlib::rectangle> run_detector2 (py::object img)
279
        {
Jack Culpepper's avatar
Jack Culpepper committed
280
            return run_detector_with_upscale2(detector, img, upsampling_amount);
281
282
283
        }


284
285
286
287
    };
}

#endif // DLIB_SIMPLE_OBJECT_DETECTOR_PY_H__