1. 05 Jun, 2023 1 commit
  2. 22 May, 2023 1 commit
    • Patrick von Platen's avatar
      Refactor full determinism (#3485) · 51843fd7
      Patrick von Platen authored
      * up
      
      * fix more
      
      * Apply suggestions from code review
      
      * fix more
      
      * fix more
      
      * Check it
      
      * Remove 16:8
      
      * fix more
      
      * fix more
      
      * fix more
      
      * up
      
      * up
      
      * Test only stable diffusion
      
      * Test only two files
      
      * up
      
      * Try out spinning up processes that can be killed
      
      * up
      
      * Apply suggestions from code review
      
      * up
      
      * up
      51843fd7
  3. 18 May, 2023 1 commit
  4. 16 May, 2023 1 commit
  5. 11 May, 2023 1 commit
    • Sayak Paul's avatar
      [Tests] better determinism (#3374) · 90f5f3c4
      Sayak Paul authored
      * enable deterministic pytorch and cuda operations.
      
      * disable manual seeding.
      
      * make style && make quality for unet_2d tests.
      
      * enable determinism for the unet2dconditional model.
      
      * add CUBLAS_WORKSPACE_CONFIG for better reproducibility.
      
      * relax tolerance (very weird issue, though).
      
      * revert to torch manual_seed() where needed.
      
      * relax more tolerance.
      
      * better placement of the cuda variable and relax more tolerance.
      
      * enable determinism for 3d condition model.
      
      * relax tolerance.
      
      * add: determinism to alt_diffusion.
      
      * relax tolerance for alt diffusion.
      
      * dance diffusion.
      
      * dance diffusion is flaky.
      
      * test_dict_tuple_outputs_equivalent edit.
      
      * fix two more tests.
      
      * fix more ddim tests.
      
      * fix: argument.
      
      * change to diff in place of difference.
      
      * fix: test_save_load call.
      
      * test_save_load_float16 call.
      
      * fix: expected_max_diff
      
      * fix: paint by example.
      
      * relax tolerance.
      
      * add determinism to 1d unet model.
      
      * torch 2.0 regressions seem to be brutal
      
      * determinism to vae.
      
      * add reason to skipping.
      
      * up tolerance.
      
      * determinism to vq.
      
      * determinism to cuda.
      
      * determinism to the generic test pipeline file.
      
      * refactor general pipelines testing a bit.
      
      * determinism to alt diffusion i2i
      
      * up tolerance for alt diff i2i and audio diff
      
      * up tolerance.
      
      * determinism to audioldm
      
      * increase tolerance for audioldm lms.
      
      * increase tolerance for paint by paint.
      
      * increase tolerance for repaint.
      
      * determinism to cycle diffusion and sd 1.
      
      * relax tol for cycle diffusion 🚲
      
      * relax tol for sd 1.0
      
      * relax tol for controlnet.
      
      * determinism to img var.
      
      * relax tol for img variation.
      
      * tolerance to i2i sd
      
      * make style
      
      * determinism to inpaint.
      
      * relax tolerance for inpaiting.
      
      * determinism for inpainting legacy
      
      * relax tolerance.
      
      * determinism to instruct pix2pix
      
      * determinism to model editing.
      
      * model editing tolerance.
      
      * panorama determinism
      
      * determinism to pix2pix zero.
      
      * determinism to sag.
      
      * sd 2. determinism
      
      * sd. tolerance
      
      * disallow tf32 matmul.
      
      * relax tolerance is all you need.
      
      * make style and determinism to sd 2 depth
      
      * relax tolerance for depth.
      
      * tolerance to diffedit.
      
      * tolerance to sd 2 inpaint.
      
      * up tolerance.
      
      * determinism in upscaling.
      
      * tolerance in upscaler.
      
      * more tolerance relaxation.
      
      * determinism to v pred.
      
      * up tol for v_pred
      
      * unclip determinism
      
      * determinism to unclip img2img
      
      * determinism to text to video.
      
      * determinism to last set of tests
      
      * up tol.
      
      * vq cumsum doesn't have a deterministic kernel
      
      * relax tol
      
      * relax tol
      90f5f3c4
  6. 09 May, 2023 1 commit
  7. 28 Apr, 2023 1 commit
    • clarencechen's avatar
      Diffedit Zero-Shot Inpainting Pipeline (#2837) · be0bfcec
      clarencechen authored
      * Update Pix2PixZero Auto-correlation Loss
      
      * Add Stable Diffusion DiffEdit pipeline
      
      * Add draft documentation and import code
      
      * Bugfixes and refactoring
      
      * Add option to not decode latents in the inversion process
      
      * Harmonize preprocessing
      
      * Revert "Update Pix2PixZero Auto-correlation Loss"
      
      This reverts commit b218062fed08d6cc164206d6cb852b2b7b00847a.
      
      * Update annotations
      
      * rename `compute_mask` to `generate_mask`
      
      * Update documentation
      
      * Update docs
      
      * Update Docs
      
      * Fix copy
      
      * Change shape of output latents to batch first
      
      * Update docs
      
      * Add first draft for tests
      
      * Bugfix and update tests
      
      * Add `cross_attention_kwargs` support for all pipeline methods
      
      * Fix Copies
      
      * Add support for PIL image latents
      
      Add support for mask broadcasting
      
      Update docs and tests
      
      Align `mask` argument to `mask_image`
      
      Remove height and width arguments
      
      * Enable MPS Tests
      
      * Move example docstrings
      
      * Fix test
      
      * Fix test
      
      * fix pipeline inheritance
      
      * Harmonize `prepare_image_latents` with StableDiffusionPix2PixZeroPipeline
      
      * Register modules set to `None` in config for `test_save_load_optional_components`
      
      * Move fixed logic to specific test class
      
      * Clean changes to other pipelines
      
      * Update new tests to coordinate with #2953
      
      * Update slow tests for better results
      
      * Safety to avoid potential problems with torch.inference_mode
      
      * Add reference in SD Pipeline Overview
      
      * Fix tests again
      
      * Enforce determinism in noise for generate_mask
      
      * Fix copies
      
      * Widen test tolerance for fp16 based on `test_stable_diffusion_upscale_pipeline_fp16`
      
      * Add LoraLoaderMixin and update `prepare_image_latents`
      
      * clean up repeat and reg
      
      * bugfix
      
      * Remove invalid args from docs
      
      Suppress spurious warning by repeating image before latent to mask gen
      be0bfcec
  8. 18 Apr, 2023 1 commit
  9. 13 Apr, 2023 1 commit
  10. 11 Apr, 2023 1 commit
    • Chanchana Sornsoontorn's avatar
      Fix typo and format BasicTransformerBlock attributes (#2953) · 52c4d32d
      Chanchana Sornsoontorn authored
      * ️chore(train_controlnet) fix typo in logger message
      
      * ️chore(models) refactor modules order; make them the same as calling order
      
      When printing the BasicTransformerBlock to stdout, I think it's crucial that the attributes order are shown in proper order. And also previously the "3. Feed Forward" comment was not making sense. It should have been close to self.ff but it's instead next to self.norm3
      
      * correct many tests
      
      * remove bogus file
      
      * make style
      
      * correct more tests
      
      * finish tests
      
      * fix one more
      
      * make style
      
      * make unclip deterministic
      
      * 
      
      ️chore(models/attention) reorganize comments in BasicTransformerBlock class
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      52c4d32d
  11. 27 Mar, 2023 1 commit
  12. 22 Mar, 2023 1 commit
  13. 21 Mar, 2023 1 commit
  14. 18 Mar, 2023 2 commits
  15. 03 Mar, 2023 1 commit
  16. 01 Mar, 2023 3 commits
  17. 28 Feb, 2023 1 commit
  18. 27 Feb, 2023 2 commits
  19. 16 Feb, 2023 3 commits
  20. 15 Feb, 2023 1 commit
  21. 14 Feb, 2023 1 commit
  22. 13 Feb, 2023 1 commit
  23. 10 Feb, 2023 1 commit
    • Patrick von Platen's avatar
      Correct fast tests (#2314) · 96c2279b
      Patrick von Platen authored
      * correct some
      
      * Apply suggestions from code review
      
      * correct
      
      * Update tests/pipelines/altdiffusion/test_alt_diffusion_img2img.py
      
      * Final
      96c2279b
  24. 08 Feb, 2023 1 commit
  25. 07 Feb, 2023 3 commits
    • Patrick von Platen's avatar
      Replace flake8 with ruff and update black (#2279) · a7ca03aa
      Patrick von Platen authored
      * before running make style
      
      * remove left overs from flake8
      
      * finish
      
      * make fix-copies
      
      * final fix
      
      * more fixes
      a7ca03aa
    • Patrick von Platen's avatar
      [Tests] Fix slow tests (#2271) · bbb46ad3
      Patrick von Platen authored
      bbb46ad3
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  26. 25 Jan, 2023 1 commit
    • Patrick von Platen's avatar
      Reproducibility 3/3 (#1924) · 6ba2231d
      Patrick von Platen authored
      
      
      * make tests deterministic
      
      * run slow tests
      
      * prepare for testing
      
      * finish
      
      * refactor
      
      * add print statements
      
      * finish more
      
      * correct some test failures
      
      * more fixes
      
      * set up to correct tests
      
      * more corrections
      
      * up
      
      * fix more
      
      * more prints
      
      * add
      
      * up
      
      * up
      
      * up
      
      * uP
      
      * uP
      
      * more fixes
      
      * uP
      
      * up
      
      * up
      
      * up
      
      * up
      
      * fix more
      
      * up
      
      * up
      
      * clean tests
      
      * up
      
      * up
      
      * up
      
      * more fixes
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * make
      
      * correct
      
      * finish
      
      * finish
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      6ba2231d
  27. 17 Jan, 2023 1 commit
  28. 29 Dec, 2022 1 commit
  29. 25 Dec, 2022 1 commit
  30. 19 Dec, 2022 1 commit
  31. 16 Dec, 2022 1 commit
  32. 13 Dec, 2022 1 commit