Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
fab4f3d6
Unverified
Commit
fab4f3d6
authored
Mar 28, 2023
by
Sayak Paul
Committed by
GitHub
Mar 28, 2023
Browse files
improve stable unclip doc. (#2823)
parent
b10f5275
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
48 additions
and
10 deletions
+48
-10
docs/source/en/api/pipelines/stable_unclip.mdx
docs/source/en/api/pipelines/stable_unclip.mdx
+48
-10
No files found.
docs/source/en/api/pipelines/stable_unclip.mdx
View file @
fab4f3d6
...
...
@@ -42,12 +42,9 @@ Coming soon!
### Text guided Image-to-Image Variation
```python
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers.utils import load_image
import torch
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variation="fp16"
...
...
@@ -55,12 +52,10 @@ pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
pipe = pipe.to("cuda")
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/tarsila_do_amaral.png"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = load_image(url)
images = pipe(init_image).images
images[0].save("
fantasy_landscap
e.png")
images[0].save("
variation_imag
e.png")
```
Optionally, you can also pass a prompt to `pipe` such as:
...
...
@@ -69,7 +64,50 @@ Optionally, you can also pass a prompt to `pipe` such as:
prompt = "A fantasy landscape, trending on artstation"
images = pipe(init_image, prompt=prompt).images
images[0].save("fantasy_landscape.png")
images[0].save("variation_image_two.png")
```
### Memory optimization
If you are short on GPU memory, you can enable smart CPU offloading so that models that are not needed
immediately for a computation can be offloaded to CPU:
```python
from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers.utils import load_image
import torch
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variation="fp16"
)
# Offload to CPU.
pipe.enable_model_cpu_offload()
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/tarsila_do_amaral.png"
init_image = load_image(url)
images = pipe(init_image).images
images[0]
```
Further memory optimizations are possible by enabling VAE slicing on the pipeline:
```python
from diffusers import StableUnCLIPImg2ImgPipeline
from diffusers.utils import load_image
import torch
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-2-1-unclip", torch_dtype=torch.float16, variation="fp16"
)
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/tarsila_do_amaral.png"
init_image = load_image(url)
images = pipe(init_image).images
images[0]
```
### StableUnCLIPPipeline
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment