Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
e44b205e
Unverified
Commit
e44b205e
authored
Jan 12, 2024
by
Charchit Sharma
Committed by
GitHub
Jan 12, 2024
Browse files
Make ControlNet SDXL Training Script torch.compile compatible (#6526)
* make torch.compile compatible * fix quality
parent
60cb4432
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
4 deletions
+11
-4
examples/controlnet/train_controlnet_sdxl.py
examples/controlnet/train_controlnet_sdxl.py
+11
-4
No files found.
examples/controlnet/train_controlnet_sdxl.py
View file @
e44b205e
...
...
@@ -52,6 +52,7 @@ from diffusers import (
from
diffusers.optimization
import
get_scheduler
from
diffusers.utils
import
check_min_version
,
is_wandb_available
,
make_image_grid
from
diffusers.utils.import_utils
import
is_xformers_available
from
diffusers.utils.torch_utils
import
is_compiled_module
if
is_wandb_available
():
...
...
@@ -847,6 +848,11 @@ def main(args):
logger
.
info
(
"Initializing controlnet weights from unet"
)
controlnet
=
ControlNetModel
.
from_unet
(
unet
)
def
unwrap_model
(
model
):
model
=
accelerator
.
unwrap_model
(
model
)
model
=
model
.
_orig_mod
if
is_compiled_module
(
model
)
else
model
return
model
# `accelerate` 0.16.0 will have better support for customized saving
if
version
.
parse
(
accelerate
.
__version__
)
>=
version
.
parse
(
"0.16.0"
):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
...
...
@@ -908,9 +914,9 @@ def main(args):
" doing mixed precision training, copy of the weights should still be float32."
)
if
accelerator
.
unwrap_model
(
controlnet
).
dtype
!=
torch
.
float32
:
if
unwrap_model
(
controlnet
).
dtype
!=
torch
.
float32
:
raise
ValueError
(
f
"Controlnet loaded as datatype
{
accelerator
.
unwrap_model
(
controlnet
).
dtype
}
.
{
low_precision_error_string
}
"
f
"Controlnet loaded as datatype
{
unwrap_model
(
controlnet
).
dtype
}
.
{
low_precision_error_string
}
"
)
# Enable TF32 for faster training on Ampere GPUs,
...
...
@@ -1158,7 +1164,8 @@ def main(args):
sample
.
to
(
dtype
=
weight_dtype
)
for
sample
in
down_block_res_samples
],
mid_block_additional_residual
=
mid_block_res_sample
.
to
(
dtype
=
weight_dtype
),
).
sample
return_dict
=
False
,
)[
0
]
# Get the target for loss depending on the prediction type
if
noise_scheduler
.
config
.
prediction_type
==
"epsilon"
:
...
...
@@ -1223,7 +1230,7 @@ def main(args):
# Create the pipeline using using the trained modules and save it.
accelerator
.
wait_for_everyone
()
if
accelerator
.
is_main_process
:
controlnet
=
accelerator
.
unwrap_model
(
controlnet
)
controlnet
=
unwrap_model
(
controlnet
)
controlnet
.
save_pretrained
(
args
.
output_dir
)
if
args
.
push_to_hub
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment