Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
e3d71ad8
Unverified
Commit
e3d71ad8
authored
Jul 09, 2023
by
Omar Sanseviero
Committed by
GitHub
Jul 10, 2023
Browse files
Minor nits to Dance DIffusion (#4012)
Update pipeline_dance_diffusion.py
parent
68f61a07
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
...ers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
+6
-6
No files found.
src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py
View file @
e3d71ad8
...
...
@@ -30,9 +30,9 @@ class DanceDiffusionPipeline(DiffusionPipeline):
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded
image
.
unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded
audio
.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded
image
. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded
audio
. Can be one of
[`IPNDMScheduler`].
"""
...
...
@@ -54,7 +54,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
batch_size (`int`, *optional*, defaults to 1):
The number of audio samples to generate.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher
quality audio sample at
The number of denoising steps. More denoising steps usually lead to a higher
-
quality audio sample at
the expense of slower inference.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
...
...
@@ -67,7 +67,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
Returns:
[`~pipelines.AudioPipelineOutput`] or `tuple`: [`~pipelines.utils.AudioPipelineOutput`] if `return_dict` is
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated
images
.
True, otherwise a `tuple
`
. When returning a tuple, the first element is a list with the generated
audio
.
"""
if
audio_length_in_s
is
None
:
...
...
@@ -94,7 +94,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
)
sample_size
=
int
(
sample_size
)
dtype
=
next
(
iter
(
self
.
unet
.
parameters
())
)
.
dtype
dtype
=
next
(
self
.
unet
.
parameters
()).
dtype
shape
=
(
batch_size
,
self
.
unet
.
config
.
in_channels
,
sample_size
)
if
isinstance
(
generator
,
list
)
and
len
(
generator
)
!=
batch_size
:
raise
ValueError
(
...
...
@@ -112,7 +112,7 @@ class DanceDiffusionPipeline(DiffusionPipeline):
# 1. predict noise model_output
model_output
=
self
.
unet
(
audio
,
t
).
sample
# 2. compute previous
imag
e: x_t -> t_t-1
# 2. compute previous
audio sampl
e: x_t -> t_t-1
audio
=
self
.
scheduler
.
step
(
model_output
,
t
,
audio
).
prev_sample
audio
=
audio
.
clamp
(
-
1
,
1
).
float
().
cpu
().
numpy
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment