"...git@developer.sourcefind.cn:OpenDAS/diffusers.git" did not exist on "a808a85390fe4bb0bfd5e97437675e0f91162ed3"
Unverified Commit b37dc3b3 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

Fix all missing optional import statements from pipeline folders (#4272)

* fix circular import

* fix imports when watermark not specified

* fix all pipelines
parent ff8f5808
...@@ -25,7 +25,6 @@ import torch.nn.functional as F ...@@ -25,7 +25,6 @@ import torch.nn.functional as F
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download
from torch import nn from torch import nn
from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
from .utils import ( from .utils import (
DIFFUSERS_CACHE, DIFFUSERS_CACHE,
HF_HUB_OFFLINE, HF_HUB_OFFLINE,
...@@ -69,7 +68,7 @@ CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensor ...@@ -69,7 +68,7 @@ CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensor
class PatchedLoraProjection(nn.Module): class PatchedLoraProjection(nn.Module):
def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None): def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
super().__init__() super().__init__()
from .models.attention_processor import LoRALinearLayer from .models.lora import LoRALinearLayer
self.regular_linear_layer = regular_linear_layer self.regular_linear_layer = regular_linear_layer
...@@ -244,6 +243,7 @@ class UNet2DConditionLoadersMixin: ...@@ -244,6 +243,7 @@ class UNet2DConditionLoadersMixin:
SlicedAttnAddedKVProcessor, SlicedAttnAddedKVProcessor,
XFormersAttnProcessor, XFormersAttnProcessor,
) )
from .models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
force_download = kwargs.pop("force_download", False) force_download = kwargs.pop("force_download", False)
......
...@@ -5,7 +5,7 @@ import numpy as np ...@@ -5,7 +5,7 @@ import numpy as np
import PIL import PIL
from PIL import Image from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass @dataclass
...@@ -27,7 +27,12 @@ class AltDiffusionPipelineOutput(BaseOutput): ...@@ -27,7 +27,12 @@ class AltDiffusionPipelineOutput(BaseOutput):
nsfw_content_detected: Optional[List[bool]] nsfw_content_detected: Optional[List[bool]]
if is_transformers_available() and is_torch_available(): try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .modeling_roberta_series import RobertaSeriesModelWithTransformation from .modeling_roberta_series import RobertaSeriesModelWithTransformation
from .pipeline_alt_diffusion import AltDiffusionPipeline from .pipeline_alt_diffusion import AltDiffusionPipeline
from .pipeline_alt_diffusion_img2img import AltDiffusionImg2ImgPipeline from .pipeline_alt_diffusion_img2img import AltDiffusionImg2ImgPipeline
...@@ -7,7 +7,12 @@ from ...utils import ( ...@@ -7,7 +7,12 @@ from ...utils import (
) )
if is_transformers_available() and is_torch_available() and is_invisible_watermark_available(): try:
if not (is_transformers_available() and is_torch_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline from .pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
......
...@@ -2,7 +2,6 @@ from ...utils import ( ...@@ -2,7 +2,6 @@ from ...utils import (
OptionalDependencyNotAvailable, OptionalDependencyNotAvailable,
is_torch_available, is_torch_available,
is_transformers_available, is_transformers_available,
is_transformers_version,
) )
...@@ -10,7 +9,7 @@ try: ...@@ -10,7 +9,7 @@ try:
if not (is_transformers_available() and is_torch_available()): if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable() raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable: except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline from ...utils.dummy_torch_and_transformers_objects import *
else: else:
from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline from .pipeline_kandinsky_img2img import KandinskyImg2ImgPipeline
......
from .pipeline_kandinsky2_2 import KandinskyV22Pipeline from ...utils import (
from .pipeline_kandinsky2_2_controlnet import KandinskyV22ControlnetPipeline OptionalDependencyNotAvailable,
from .pipeline_kandinsky2_2_controlnet_img2img import KandinskyV22ControlnetImg2ImgPipeline is_torch_available,
from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline is_transformers_available,
from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline )
from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline
from .pipeline_kandinsky2_2_prior_emb2emb import KandinskyV22PriorEmb2EmbPipeline
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_kandinsky2_2 import KandinskyV22Pipeline
from .pipeline_kandinsky2_2_controlnet import KandinskyV22ControlnetPipeline
from .pipeline_kandinsky2_2_controlnet_img2img import KandinskyV22ControlnetImg2ImgPipeline
from .pipeline_kandinsky2_2_img2img import KandinskyV22Img2ImgPipeline
from .pipeline_kandinsky2_2_inpainting import KandinskyV22InpaintPipeline
from .pipeline_kandinsky2_2_prior import KandinskyV22PriorPipeline
from .pipeline_kandinsky2_2_prior_emb2emb import KandinskyV22PriorEmb2EmbPipeline
from ...utils import is_transformers_available from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline
if is_transformers_available(): try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
...@@ -5,9 +5,14 @@ import numpy as np ...@@ -5,9 +5,14 @@ import numpy as np
import PIL import PIL
from PIL import Image from PIL import Image
from ...utils import is_torch_available, is_transformers_available from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available(): try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .image_encoder import PaintByExampleImageEncoder from .image_encoder import PaintByExampleImageEncoder
from .pipeline_paint_by_example import PaintByExamplePipeline from .pipeline_paint_by_example import PaintByExamplePipeline
...@@ -6,7 +6,7 @@ import numpy as np ...@@ -6,7 +6,7 @@ import numpy as np
import PIL import PIL
from PIL import Image from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass @dataclass
...@@ -27,5 +27,10 @@ class SemanticStableDiffusionPipelineOutput(BaseOutput): ...@@ -27,5 +27,10 @@ class SemanticStableDiffusionPipelineOutput(BaseOutput):
nsfw_content_detected: Optional[List[bool]] nsfw_content_detected: Optional[List[bool]]
if is_transformers_available() and is_torch_available(): try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
...@@ -6,7 +6,7 @@ import numpy as np ...@@ -6,7 +6,7 @@ import numpy as np
import PIL import PIL
from PIL import Image from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass @dataclass
...@@ -66,6 +66,11 @@ class StableDiffusionSafePipelineOutput(BaseOutput): ...@@ -66,6 +66,11 @@ class StableDiffusionSafePipelineOutput(BaseOutput):
applied_safety_concept: Optional[str] applied_safety_concept: Optional[str]
if is_transformers_available() and is_torch_available(): try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe
from .safety_checker import SafeStableDiffusionSafetyChecker from .safety_checker import SafeStableDiffusionSafetyChecker
...@@ -4,7 +4,13 @@ from typing import List, Optional, Union ...@@ -4,7 +4,13 @@ from typing import List, Optional, Union
import numpy as np import numpy as np
import PIL import PIL
from ...utils import BaseOutput, is_invisible_watermark_available, is_torch_available, is_transformers_available from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_invisible_watermark_available,
is_torch_available,
is_transformers_available,
)
@dataclass @dataclass
...@@ -21,7 +27,12 @@ class StableDiffusionXLPipelineOutput(BaseOutput): ...@@ -21,7 +27,12 @@ class StableDiffusionXLPipelineOutput(BaseOutput):
images: Union[List[PIL.Image.Image], np.ndarray] images: Union[List[PIL.Image.Image], np.ndarray]
if is_transformers_available() and is_torch_available() and is_invisible_watermark_available(): try:
if not (is_transformers_available() and is_torch_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_xl import StableDiffusionXLPipeline from .pipeline_stable_diffusion_xl import StableDiffusionXLPipeline
from .pipeline_stable_diffusion_xl_img2img import StableDiffusionXLImg2ImgPipeline from .pipeline_stable_diffusion_xl_img2img import StableDiffusionXLImg2ImgPipeline
from .pipeline_stable_diffusion_xl_inpaint import StableDiffusionXLInpaintPipeline from .pipeline_stable_diffusion_xl_inpaint import StableDiffusionXLInpaintPipeline
......
from ...utils import is_torch_available, is_transformers_available from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available(): try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import *
else:
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment