Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
b053053a
Unverified
Commit
b053053a
authored
Jan 15, 2024
by
Charchit Sharma
Committed by
GitHub
Jan 15, 2024
Browse files
Make InstructPix2Pix Training Script torch.compile compatible (#6558)
* added torch.compile for pix2pix * required changes
parent
08702fc1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
7 deletions
+13
-7
examples/instruct_pix2pix/train_instruct_pix2pix.py
examples/instruct_pix2pix/train_instruct_pix2pix.py
+13
-7
No files found.
examples/instruct_pix2pix/train_instruct_pix2pix.py
View file @
b053053a
...
...
@@ -49,6 +49,7 @@ from diffusers.optimization import get_scheduler
from
diffusers.training_utils
import
EMAModel
from
diffusers.utils
import
check_min_version
,
deprecate
,
is_wandb_available
from
diffusers.utils.import_utils
import
is_xformers_available
from
diffusers.utils.torch_utils
import
is_compiled_module
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
...
...
@@ -489,6 +490,11 @@ def main():
else
:
raise
ValueError
(
"xformers is not available. Make sure it is installed correctly"
)
def
unwrap_model
(
model
):
model
=
accelerator
.
unwrap_model
(
model
)
model
=
model
.
_orig_mod
if
is_compiled_module
(
model
)
else
model
return
model
# `accelerate` 0.16.0 will have better support for customized saving
if
version
.
parse
(
accelerate
.
__version__
)
>=
version
.
parse
(
"0.16.0"
):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
...
...
@@ -845,7 +851,7 @@ def main():
raise
ValueError
(
f
"Unknown prediction type
{
noise_scheduler
.
config
.
prediction_type
}
"
)
# Predict the noise residual and compute loss
model_pred
=
unet
(
concatenated_noisy_latents
,
timesteps
,
encoder_hidden_states
).
sample
model_pred
=
unet
(
concatenated_noisy_latents
,
timesteps
,
encoder_hidden_states
,
return_dict
=
False
)[
0
]
loss
=
F
.
mse_loss
(
model_pred
.
float
(),
target
.
float
(),
reduction
=
"mean"
)
# Gather the losses across all processes for logging (if we use distributed training).
...
...
@@ -919,9 +925,9 @@ def main():
# The models need unwrapping because for compatibility in distributed training mode.
pipeline
=
StableDiffusionInstructPix2PixPipeline
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
unet
=
accelerator
.
unwrap_model
(
unet
),
text_encoder
=
accelerator
.
unwrap_model
(
text_encoder
),
vae
=
accelerator
.
unwrap_model
(
vae
),
unet
=
unwrap_model
(
unet
),
text_encoder
=
unwrap_model
(
text_encoder
),
vae
=
unwrap_model
(
vae
),
revision
=
args
.
revision
,
variant
=
args
.
variant
,
torch_dtype
=
weight_dtype
,
...
...
@@ -965,14 +971,14 @@ def main():
# Create the pipeline using the trained modules and save it.
accelerator
.
wait_for_everyone
()
if
accelerator
.
is_main_process
:
unet
=
accelerator
.
unwrap_model
(
unet
)
unet
=
unwrap_model
(
unet
)
if
args
.
use_ema
:
ema_unet
.
copy_to
(
unet
.
parameters
())
pipeline
=
StableDiffusionInstructPix2PixPipeline
.
from_pretrained
(
args
.
pretrained_model_name_or_path
,
text_encoder
=
accelerator
.
unwrap_model
(
text_encoder
),
vae
=
accelerator
.
unwrap_model
(
vae
),
text_encoder
=
unwrap_model
(
text_encoder
),
vae
=
unwrap_model
(
vae
),
unet
=
unet
,
revision
=
args
.
revision
,
variant
=
args
.
variant
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment