Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
6281d206
Unverified
Commit
6281d206
authored
Sep 25, 2023
by
Carson Katri
Committed by
GitHub
Sep 25, 2023
Browse files
Add callbacks to `WuerstchenDecoderPipeline` and `WuerstchenCombinedPipeline` (#5154)
parent
28254c79
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
33 additions
and
2 deletions
+33
-2
src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py
src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py
+13
-2
src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
...sers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
+20
-0
No files found.
src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py
View file @
6281d206
...
@@ -12,7 +12,7 @@
...
@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
typing
import
List
,
Optional
,
Union
from
typing
import
Callable
,
List
,
Optional
,
Union
import
numpy
as
np
import
numpy
as
np
import
torch
import
torch
...
@@ -202,6 +202,8 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
...
@@ -202,6 +202,8 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
latents
:
Optional
[
torch
.
FloatTensor
]
=
None
,
latents
:
Optional
[
torch
.
FloatTensor
]
=
None
,
output_type
:
Optional
[
str
]
=
"pil"
,
output_type
:
Optional
[
str
]
=
"pil"
,
return_dict
:
bool
=
True
,
return_dict
:
bool
=
True
,
callback
:
Optional
[
Callable
[[
int
,
int
,
torch
.
FloatTensor
],
None
]]
=
None
,
callback_steps
:
int
=
1
,
):
):
"""
"""
Function invoked when calling the pipeline for generation.
Function invoked when calling the pipeline for generation.
...
@@ -240,6 +242,12 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
...
@@ -240,6 +242,12 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
(`np.array`) or `"pt"` (`torch.Tensor`).
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Examples:
Examples:
...
@@ -315,7 +323,7 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
...
@@ -315,7 +323,7 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
latents
=
self
.
prepare_latents
(
latent_features_shape
,
dtype
,
device
,
generator
,
latents
,
self
.
scheduler
)
latents
=
self
.
prepare_latents
(
latent_features_shape
,
dtype
,
device
,
generator
,
latents
,
self
.
scheduler
)
# 6. Run denoising loop
# 6. Run denoising loop
for
t
in
self
.
progress_bar
(
timesteps
[:
-
1
]):
for
i
,
t
in
enumerate
(
self
.
progress_bar
(
timesteps
[:
-
1
])
)
:
ratio
=
t
.
expand
(
latents
.
size
(
0
)).
to
(
dtype
)
ratio
=
t
.
expand
(
latents
.
size
(
0
)).
to
(
dtype
)
effnet
=
(
effnet
=
(
torch
.
cat
([
image_embeddings
,
torch
.
zeros_like
(
image_embeddings
)])
torch
.
cat
([
image_embeddings
,
torch
.
zeros_like
(
image_embeddings
)])
...
@@ -343,6 +351,9 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
...
@@ -343,6 +351,9 @@ class WuerstchenDecoderPipeline(DiffusionPipeline):
generator
=
generator
,
generator
=
generator
,
).
prev_sample
).
prev_sample
if
callback
is
not
None
and
i
%
callback_steps
==
0
:
callback
(
i
,
t
,
latents
)
# 10. Scale and decode the image latents with vq-vae
# 10. Scale and decode the image latents with vq-vae
latents
=
self
.
vqgan
.
config
.
scale_factor
*
latents
latents
=
self
.
vqgan
.
config
.
scale_factor
*
latents
images
=
self
.
vqgan
.
decode
(
latents
).
sample
.
clamp
(
0
,
1
)
images
=
self
.
vqgan
.
decode
(
latents
).
sample
.
clamp
(
0
,
1
)
...
...
src/diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py
View file @
6281d206
...
@@ -161,6 +161,10 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
...
@@ -161,6 +161,10 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
latents
:
Optional
[
torch
.
FloatTensor
]
=
None
,
latents
:
Optional
[
torch
.
FloatTensor
]
=
None
,
output_type
:
Optional
[
str
]
=
"pil"
,
output_type
:
Optional
[
str
]
=
"pil"
,
return_dict
:
bool
=
True
,
return_dict
:
bool
=
True
,
prior_callback
:
Optional
[
Callable
[[
int
,
int
,
torch
.
FloatTensor
],
None
]]
=
None
,
prior_callback_steps
:
int
=
1
,
callback
:
Optional
[
Callable
[[
int
,
int
,
torch
.
FloatTensor
],
None
]]
=
None
,
callback_steps
:
int
=
1
,
):
):
"""
"""
Function invoked when calling the pipeline for generation.
Function invoked when calling the pipeline for generation.
...
@@ -222,6 +226,18 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
...
@@ -222,6 +226,18 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
(`np.array`) or `"pt"` (`torch.Tensor`).
(`np.array`) or `"pt"` (`torch.Tensor`).
return_dict (`bool`, *optional*, defaults to `True`):
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
prior_callback (`Callable`, *optional*):
A function that will be called every `prior_callback_steps` steps during inference. The function will be
called with the following arguments: `prior_callback(step: int, timestep: int, latents: torch.FloatTensor)`.
prior_callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
Examples:
Examples:
...
@@ -244,6 +260,8 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
...
@@ -244,6 +260,8 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
latents
=
latents
,
latents
=
latents
,
output_type
=
"pt"
,
output_type
=
"pt"
,
return_dict
=
False
,
return_dict
=
False
,
callback
=
prior_callback
,
callback_steps
=
prior_callback_steps
,
)
)
image_embeddings
=
prior_outputs
[
0
]
image_embeddings
=
prior_outputs
[
0
]
...
@@ -257,6 +275,8 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
...
@@ -257,6 +275,8 @@ class WuerstchenCombinedPipeline(DiffusionPipeline):
generator
=
generator
,
generator
=
generator
,
output_type
=
output_type
,
output_type
=
output_type
,
return_dict
=
return_dict
,
return_dict
=
return_dict
,
callback
=
callback
,
callback_steps
=
callback_steps
,
)
)
return
outputs
return
outputs
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment