Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
61ea57c5
Commit
61ea57c5
authored
Jun 30, 2022
by
Patrick von Platen
Browse files
clean up lots of dead code
parent
810c0e4f
Changes
3
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
105 additions
and
536 deletions
+105
-536
src/diffusers/models/unet.py
src/diffusers/models/unet.py
+0
-42
src/diffusers/models/unet_glide.py
src/diffusers/models/unet_glide.py
+0
-13
src/diffusers/models/unet_ldm.py
src/diffusers/models/unet_ldm.py
+105
-481
No files found.
src/diffusers/models/unet.py
View file @
61ea57c5
...
...
@@ -34,48 +34,6 @@ def Normalize(in_channels):
return
torch
.
nn
.
GroupNorm
(
num_groups
=
32
,
num_channels
=
in_channels
,
eps
=
1e-6
,
affine
=
True
)
# class ResnetBlock(nn.Module):
# def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
# super().__init__()
# self.in_channels = in_channels
# out_channels = in_channels if out_channels is None else out_channels
# self.out_channels = out_channels
# self.use_conv_shortcut = conv_shortcut
#
# self.norm1 = Normalize(in_channels)
# self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
# self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
# self.norm2 = Normalize(out_channels)
# self.dropout = torch.nn.Dropout(dropout)
# self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
# if self.in_channels != self.out_channels:
# if self.use_conv_shortcut:
# self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
# else:
# self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
#
# def forward(self, x, temb):
# h = x
# h = self.norm1(h)
# h = nonlinearity(h)
# h = self.conv1(h)
#
# h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
#
# h = self.norm2(h)
# h = nonlinearity(h)
# h = self.dropout(h)
# h = self.conv2(h)
#
# if self.in_channels != self.out_channels:
# if self.use_conv_shortcut:
# x = self.conv_shortcut(x)
# else:
# x = self.nin_shortcut(x)
#
# return x + h
class
UNetModel
(
ModelMixin
,
ConfigMixin
):
def
__init__
(
self
,
...
...
src/diffusers/models/unet_glide.py
View file @
61ea57c5
...
...
@@ -29,19 +29,6 @@ def convert_module_to_f32(l):
l
.
bias
.
data
=
l
.
bias
.
data
.
float
()
def
avg_pool_nd
(
dims
,
*
args
,
**
kwargs
):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if
dims
==
1
:
return
nn
.
AvgPool1d
(
*
args
,
**
kwargs
)
elif
dims
==
2
:
return
nn
.
AvgPool2d
(
*
args
,
**
kwargs
)
elif
dims
==
3
:
return
nn
.
AvgPool3d
(
*
args
,
**
kwargs
)
raise
ValueError
(
f
"unsupported dimensions:
{
dims
}
"
)
def
conv_nd
(
dims
,
*
args
,
**
kwargs
):
"""
Create a 1D, 2D, or 3D convolution module.
...
...
src/diffusers/models/unet_ldm.py
View file @
61ea57c5
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment