"...en/git@developer.sourcefind.cn:OpenDAS/diffusers.git" did not exist on "fa6d52d59422c0bd56b6b22902794a34b67e9f47"
Unverified Commit 4fbd310f authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[Chore] switch to `logger.warning` (#7289)

switch to logger.warning
parent 2ea28d69
...@@ -407,7 +407,7 @@ def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step) ...@@ -407,7 +407,7 @@ def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step)
tracker.log({"validation": formatted_images}) tracker.log({"validation": formatted_images})
else: else:
logger.warn(f"image logging not implemented for {tracker.name}") logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline del pipeline
gc.collect() gc.collect()
...@@ -1057,7 +1057,7 @@ def main(args): ...@@ -1057,7 +1057,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -574,7 +574,7 @@ def main(args): ...@@ -574,7 +574,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -672,7 +672,7 @@ def main(args): ...@@ -672,7 +672,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -516,7 +516,7 @@ def main(): ...@@ -516,7 +516,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -608,7 +608,7 @@ def main(): ...@@ -608,7 +608,7 @@ def main():
# Create the pipeline using using the trained modules and save it. # Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process: if accelerator.is_main_process:
if args.push_to_hub and args.only_save_embeds: if args.push_to_hub and args.only_save_embeds:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.") logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True save_full_model = True
else: else:
save_full_model = not args.only_save_embeds save_full_model = not args.only_save_embeds
......
...@@ -541,7 +541,7 @@ def main(): ...@@ -541,7 +541,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -645,7 +645,7 @@ def main(): ...@@ -645,7 +645,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
...@@ -901,7 +901,7 @@ def main(): ...@@ -901,7 +901,7 @@ def main():
accelerator.wait_for_everyone() accelerator.wait_for_everyone()
if accelerator.is_main_process: if accelerator.is_main_process:
if args.push_to_hub and args.only_save_embeds: if args.push_to_hub and args.only_save_embeds:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.") logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True save_full_model = True
else: else:
save_full_model = not args.only_save_embeds save_full_model = not args.only_save_embeds
......
...@@ -108,7 +108,7 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight ...@@ -108,7 +108,7 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight
} }
) )
else: else:
logger.warn(f"image logging not implemented for {tracker.name}") logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline del pipeline
torch.cuda.empty_cache() torch.cuda.empty_cache()
...@@ -523,7 +523,7 @@ def main(): ...@@ -523,7 +523,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -687,7 +687,7 @@ def main(): ...@@ -687,7 +687,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
...@@ -916,7 +916,7 @@ def main(): ...@@ -916,7 +916,7 @@ def main():
accelerator.wait_for_everyone() accelerator.wait_for_everyone()
if accelerator.is_main_process: if accelerator.is_main_process:
if args.push_to_hub and not args.save_as_full_pipeline: if args.push_to_hub and not args.save_as_full_pipeline:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.") logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True save_full_model = True
else: else:
save_full_model = args.save_as_full_pipeline save_full_model = args.save_as_full_pipeline
......
...@@ -410,7 +410,7 @@ def main(args): ...@@ -410,7 +410,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
model.enable_xformers_memory_efficient_attention() model.enable_xformers_memory_efficient_attention()
......
...@@ -629,7 +629,7 @@ def main(args): ...@@ -629,7 +629,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -167,7 +167,7 @@ def log_validation(vae, unet, adapter, args, accelerator, weight_dtype, step): ...@@ -167,7 +167,7 @@ def log_validation(vae, unet, adapter, args, accelerator, weight_dtype, step):
tracker.log({"validation": formatted_images}) tracker.log({"validation": formatted_images})
else: else:
logger.warn(f"image logging not implemented for {tracker.name}") logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline del pipeline
gc.collect() gc.collect()
...@@ -932,7 +932,7 @@ def main(args): ...@@ -932,7 +932,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -183,7 +183,7 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight ...@@ -183,7 +183,7 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight
} }
) )
else: else:
logger.warn(f"image logging not implemented for {tracker.name}") logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline del pipeline
torch.cuda.empty_cache() torch.cuda.empty_cache()
...@@ -608,7 +608,7 @@ def main(): ...@@ -608,7 +608,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -497,7 +497,7 @@ def main(): ...@@ -497,7 +497,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -616,7 +616,7 @@ def main(args): ...@@ -616,7 +616,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -712,7 +712,7 @@ def main(args): ...@@ -712,7 +712,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
......
...@@ -708,7 +708,7 @@ def main(): ...@@ -708,7 +708,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
...@@ -966,7 +966,7 @@ def main(): ...@@ -966,7 +966,7 @@ def main():
accelerator.wait_for_everyone() accelerator.wait_for_everyone()
if accelerator.is_main_process: if accelerator.is_main_process:
if args.push_to_hub and not args.save_as_full_pipeline: if args.push_to_hub and not args.save_as_full_pipeline:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.") logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True save_full_model = True
else: else:
save_full_model = args.save_as_full_pipeline save_full_model = args.save_as_full_pipeline
......
...@@ -711,7 +711,7 @@ def main(): ...@@ -711,7 +711,7 @@ def main():
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
unet.enable_xformers_memory_efficient_attention() unet.enable_xformers_memory_efficient_attention()
...@@ -1022,7 +1022,7 @@ def main(): ...@@ -1022,7 +1022,7 @@ def main():
) )
if args.push_to_hub and not args.save_as_full_pipeline: if args.push_to_hub and not args.save_as_full_pipeline:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.") logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True save_full_model = True
else: else:
save_full_model = args.save_as_full_pipeline save_full_model = args.save_as_full_pipeline
......
...@@ -408,7 +408,7 @@ def main(args): ...@@ -408,7 +408,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__) xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"): if xformers_version == version.parse("0.0.16"):
logger.warn( logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
) )
model.enable_xformers_memory_efficient_attention() model.enable_xformers_memory_efficient_attention()
......
...@@ -184,7 +184,7 @@ def log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dty ...@@ -184,7 +184,7 @@ def log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dty
} }
) )
else: else:
logger.warn(f"image logging not implemented for {tracker.name}") logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline del pipeline
torch.cuda.empty_cache() torch.cuda.empty_cache()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment