Unverified Commit 4fbd310f authored by Sayak Paul's avatar Sayak Paul Committed by GitHub
Browse files

[Chore] switch to `logger.warning` (#7289)

switch to logger.warning
parent 2ea28d69
......@@ -407,7 +407,7 @@ def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step)
tracker.log({"validation": formatted_images})
else:
logger.warn(f"image logging not implemented for {tracker.name}")
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
gc.collect()
......@@ -1057,7 +1057,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -574,7 +574,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -672,7 +672,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -516,7 +516,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -608,7 +608,7 @@ def main():
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
if args.push_to_hub and args.only_save_embeds:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True
else:
save_full_model = not args.only_save_embeds
......
......@@ -541,7 +541,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -645,7 +645,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......@@ -901,7 +901,7 @@ def main():
accelerator.wait_for_everyone()
if accelerator.is_main_process:
if args.push_to_hub and args.only_save_embeds:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True
else:
save_full_model = not args.only_save_embeds
......
......@@ -108,7 +108,7 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight
}
)
else:
logger.warn(f"image logging not implemented for {tracker.name}")
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
torch.cuda.empty_cache()
......@@ -523,7 +523,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -687,7 +687,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......@@ -916,7 +916,7 @@ def main():
accelerator.wait_for_everyone()
if accelerator.is_main_process:
if args.push_to_hub and not args.save_as_full_pipeline:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True
else:
save_full_model = args.save_as_full_pipeline
......
......@@ -410,7 +410,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
model.enable_xformers_memory_efficient_attention()
......
......@@ -629,7 +629,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -167,7 +167,7 @@ def log_validation(vae, unet, adapter, args, accelerator, weight_dtype, step):
tracker.log({"validation": formatted_images})
else:
logger.warn(f"image logging not implemented for {tracker.name}")
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
gc.collect()
......@@ -932,7 +932,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -183,7 +183,7 @@ def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight
}
)
else:
logger.warn(f"image logging not implemented for {tracker.name}")
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
torch.cuda.empty_cache()
......@@ -608,7 +608,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -497,7 +497,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -616,7 +616,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -712,7 +712,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......
......@@ -708,7 +708,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......@@ -966,7 +966,7 @@ def main():
accelerator.wait_for_everyone()
if accelerator.is_main_process:
if args.push_to_hub and not args.save_as_full_pipeline:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True
else:
save_full_model = args.save_as_full_pipeline
......
......@@ -711,7 +711,7 @@ def main():
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
......@@ -1022,7 +1022,7 @@ def main():
)
if args.push_to_hub and not args.save_as_full_pipeline:
logger.warn("Enabling full model saving because --push_to_hub=True was specified.")
logger.warning("Enabling full model saving because --push_to_hub=True was specified.")
save_full_model = True
else:
save_full_model = args.save_as_full_pipeline
......
......@@ -408,7 +408,7 @@ def main(args):
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
model.enable_xformers_memory_efficient_attention()
......
......@@ -184,7 +184,7 @@ def log_validation(text_encoder, tokenizer, prior, args, accelerator, weight_dty
}
)
else:
logger.warn(f"image logging not implemented for {tracker.name}")
logger.warning(f"image logging not implemented for {tracker.name}")
del pipeline
torch.cuda.empty_cache()
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment