Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
417927f5
Commit
417927f5
authored
Jun 03, 2022
by
Patrick von Platen
Browse files
add some examples to seperate sampler and schedules
parent
a2afe04e
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
98 additions
and
2 deletions
+98
-2
examples/sample_loop.py
examples/sample_loop.py
+95
-0
src/diffusers/samplers/gaussian.py
src/diffusers/samplers/gaussian.py
+3
-2
No files found.
examples/sample_loop.py
0 → 100755
View file @
417927f5
#!/usr/bin/env python3
from
diffusers
import
UNetModel
,
GaussianDiffusion
import
torch
import
torch.nn.functional
as
F
unet
=
UNetModel
.
from_pretrained
(
"fusing/ddpm_dummy"
)
diffusion
=
GaussianDiffusion
.
from_config
(
"fusing/ddpm_dummy"
)
# 2. Do one denoising step with model
batch_size
,
num_channels
,
height
,
width
=
1
,
3
,
32
,
32
dummy_noise
=
torch
.
ones
((
batch_size
,
num_channels
,
height
,
width
))
TIME_STEPS
=
10
# Helper
def
extract
(
a
,
t
,
x_shape
):
b
,
*
_
=
t
.
shape
out
=
a
.
gather
(
-
1
,
t
)
return
out
.
reshape
(
b
,
*
((
1
,)
*
(
len
(
x_shape
)
-
1
)))
def
noise_like
(
shape
,
device
,
repeat
=
False
):
def
repeat_noise
():
return
torch
.
randn
((
1
,
*
shape
[
1
:]),
device
=
device
).
repeat
(
shape
[
0
],
*
((
1
,)
*
(
len
(
shape
)
-
1
)))
def
noise
():
return
torch
.
randn
(
shape
,
device
=
device
)
return
repeat_noise
()
if
repeat
else
noise
()
# Schedule
def
cosine_beta_schedule
(
timesteps
,
s
=
0.008
):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps
=
timesteps
+
1
x
=
torch
.
linspace
(
0
,
timesteps
,
steps
,
dtype
=
torch
.
float64
)
alphas_cumprod
=
torch
.
cos
(((
x
/
timesteps
)
+
s
)
/
(
1
+
s
)
*
torch
.
pi
*
0.5
)
**
2
alphas_cumprod
=
alphas_cumprod
/
alphas_cumprod
[
0
]
betas
=
1
-
(
alphas_cumprod
[
1
:]
/
alphas_cumprod
[:
-
1
])
return
torch
.
clip
(
betas
,
0
,
0.999
)
betas
=
cosine_beta_schedule
(
TIME_STEPS
)
alphas
=
1.0
-
betas
alphas_cumprod
=
torch
.
cumprod
(
alphas
,
axis
=
0
)
alphas_cumprod_prev
=
F
.
pad
(
alphas_cumprod
[:
-
1
],
(
1
,
0
),
value
=
1.0
)
posterior_mean_coef1
=
betas
*
torch
.
sqrt
(
alphas_cumprod_prev
)
/
(
1.0
-
alphas_cumprod
)
posterior_mean_coef2
=
(
1.0
-
alphas_cumprod_prev
)
*
torch
.
sqrt
(
alphas
)
/
(
1.0
-
alphas_cumprod
)
posterior_variance
=
betas
*
(
1.0
-
alphas_cumprod_prev
)
/
(
1.0
-
alphas_cumprod
)
posterior_log_variance_clipped
=
torch
.
log
(
posterior_variance
.
clamp
(
min
=
1e-20
))
sqrt_recip_alphas_cumprod
=
torch
.
sqrt
(
1.0
/
alphas_cumprod
)
sqrt_recipm1_alphas_cumprod
=
torch
.
sqrt
(
1.0
/
alphas_cumprod
-
1
)
x_t
=
dummy_noise
for
i
in
reversed
(
range
(
TIME_STEPS
)):
# t for x_t
t
=
torch
.
tensor
([
i
])
torch
.
manual_seed
(
0
)
noise
=
noise_like
(
x_t
.
shape
,
"cpu"
)
x_t2
=
diffusion
.
p_sample
(
unet
,
x_t
,
t
,
noise
=
noise
)
# ------------------------- MODEL ------------------------------------#
# predict epsilon
pred_noise
=
unet
(
x_t
,
t
)
pred_x
=
extract
(
sqrt_recip_alphas_cumprod
,
t
,
x_t
.
shape
)
*
x_t
-
extract
(
sqrt_recipm1_alphas_cumprod
,
t
,
x_t
.
shape
)
*
pred_noise
pred_x
.
clamp_
(
-
1.0
,
1.0
)
posterior_mean
=
extract
(
posterior_mean_coef1
,
t
,
x_t
.
shape
)
*
pred_x
+
extract
(
posterior_mean_coef2
,
t
,
x_t
.
shape
)
*
x_t
# --------------------------------------------------------------------#
# predict x_{t-1} (=pred_x)
# ------------------------- Variance Scheduler -----------------------#
posterior_log_variance
=
extract
(
posterior_log_variance_clipped
,
t
,
x_t
.
shape
)
# no noise when t == 0
b
,
*
_
,
device
=
*
x_t
.
shape
,
x_t
.
device
nonzero_mask
=
(
1
-
(
t
==
0
).
float
()).
reshape
(
b
,
*
((
1
,)
*
(
len
(
x_t
.
shape
)
-
1
)))
posterior_variance
=
nonzero_mask
*
(
0.5
*
posterior_log_variance
).
exp
()
# --------------------------------------------------------------------#
x_t
=
posterior_mean
+
posterior_variance
*
noise
x_t
=
x_t
.
to
(
torch
.
float32
)
# make sure manual loop is equal to function
assert
(
x_t
-
x_t2
).
abs
().
sum
().
item
()
<
1e-3
src/diffusers/samplers/gaussian.py
View file @
417927f5
...
...
@@ -219,10 +219,11 @@ class GaussianDiffusion(nn.Module, Config):
return
model_mean
,
posterior_variance
,
posterior_log_variance
@
torch
.
no_grad
()
def
p_sample
(
self
,
model
,
x
,
t
,
clip_denoised
=
True
,
repeat_noise
=
False
):
def
p_sample
(
self
,
model
,
x
,
t
,
noise
=
None
,
clip_denoised
=
True
,
repeat_noise
=
False
):
b
,
*
_
,
device
=
*
x
.
shape
,
x
.
device
model_mean
,
_
,
model_log_variance
=
self
.
p_mean_variance
(
model
=
model
,
x
=
x
,
t
=
t
,
clip_denoised
=
clip_denoised
)
noise
=
noise_like
(
x
.
shape
,
device
,
repeat_noise
)
if
noise
is
None
:
noise
=
noise_like
(
x
.
shape
,
device
,
repeat_noise
)
# no noise when t == 0
nonzero_mask
=
(
1
-
(
t
==
0
).
float
()).
reshape
(
b
,
*
((
1
,)
*
(
len
(
x
.
shape
)
-
1
)))
result
=
model_mean
+
nonzero_mask
*
(
0.5
*
model_log_variance
).
exp
()
*
noise
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment