Commit 21450ff0 authored by lijian6's avatar lijian6
Browse files

Add README.md and modify setup.py.


Signed-off-by: lijian6's avatarlijian <lijian6@sugon.com>
parent a9ae9148
__dcu_version__ = '0.29.0+das1.2.gita9ae914.abi0.dtk2404'
<!--- # <div align="center"><strong>diffusers</strong></div>
Copyright 2022 - The HuggingFace Team. All rights reserved. ## 简介
Diffusers是用于生成图像、音频、甚至3D分子结构的最先进预训练扩散模型的首选库。无论您是在寻找简单的推理解决方案,还是训练自己的扩散模型,Diffusers是一个两者都支持的模块化工具箱。Diffusers库设计重点在于易用性超过性能、简单超过便捷、可定制性超过抽象性。
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. ## 安装
You may obtain a copy of the License at 组件支持
+ Python 3.8、3.9、3.10
http://www.apache.org/licenses/LICENSE-2.0
### 1、使用pip方式安装
Unless required by applicable law or agreed to in writing, software diffusers whl包下载目录:[https://cancon.hpccube.com:65024/4/main/diffusers](https://cancon.hpccube.com:65024/4/main/diffusers),选择对应的python版本下载对应diffusers的whl包
distributed under the License is distributed on an "AS IS" BASIS, ```shell
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. pip install diffusers* (下载的diffusers的whl包)
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
</a>
<a href="https://github.com/huggingface/diffusers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
</a>
<a href="https://pepy.tech/project/diffusers">
<img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month">
</a>
<a href="CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg">
</a>
<a href="https://twitter.com/diffuserslib">
<img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib">
</a>
</p>
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
🤗 Diffusers offers three core components:
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code.
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality.
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
## Installation
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
### PyTorch
With `pip` (official package):
```bash
pip install --upgrade diffusers[torch]
``` ```
### 2、使用源码编译方式安装
With `conda` (maintained by the community): #### 源码编译安装
- 代码下载
```sh ```shell
conda install -c conda-forge diffusers git clone https://developer.hpccube.com/codes/OpenDAS/diffusers # 根据编译需要切换分支
``` ```
- 提供2种源码编译方式(进入diffusers目录):
### Flax
With `pip` (official package):
```bash
pip install --upgrade diffusers[flax]
``` ```
1. 编译whl包并安装
python3 setup.py bdist_wheel
pip install dist/diffusers*
### Apple Silicon (M1/M2) support 2. 源码编译安装
python3 setup.py install
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide.
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 25.000+ checkpoints):
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
``` ```
You can also dig into the models and schedulers toolbox to build your own diffusion system: ## 验证
- python -c "import diffusers; diffusers.__version__",版本号与官方版本同步,查询该软件的版本号,例如0.29.0;
```python
from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") ## Known Issue
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") -
scheduler.set_timesteps(50)
sample_size = model.config.sample_size ## 参考资料
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda") - [README_ORIGIN](README_ORIGIN.md)
input = noise - [https://github.com/huggingface/diffusers](https://github.com/huggingface/diffusers)
for t in scheduler.timesteps:
with torch.no_grad():
noisy_residual = model(input, t).sample
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
image
```
Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today!
## How to navigate the documentation
| **Documentation** | **What can I learn?** |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution
We ❤️ contributions from the open-source community!
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.
## Popular Tasks & Pipelines
<table>
<tr>
<th>Task</th>
<th>Pipeline</th>
<th>🤗 Hub</th>
</tr>
<tr style="border-top: 2px solid black">
<td>Unconditional Image Generation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td>
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td>
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td>
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td>
<td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td>
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td>
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
</tr>
<tr>
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
</tr>
</table>
## Popular libraries using 🧨 Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +11.000 other amazing GitHub repositories 💪
Thank you for using us ❤️.
## Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim)
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
## Citation
```bibtex
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
```
<!---
Copyright 2022 - The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/en/imgs/diffusers_library.jpg" width="400"/>
<br>
<p>
<p align="center">
<a href="https://github.com/huggingface/diffusers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/datasets.svg?color=blue">
</a>
<a href="https://github.com/huggingface/diffusers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/diffusers.svg">
</a>
<a href="https://pepy.tech/project/diffusers">
<img alt="GitHub release" src="https://static.pepy.tech/badge/diffusers/month">
</a>
<a href="CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg">
</a>
<a href="https://twitter.com/diffuserslib">
<img alt="X account" src="https://img.shields.io/twitter/url/https/twitter.com/diffuserslib.svg?style=social&label=Follow%20%40diffuserslib">
</a>
</p>
🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction).
🤗 Diffusers offers three core components:
- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code.
- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality.
- Pretrained [models](https://huggingface.co/docs/diffusers/api/models/overview) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.
## Installation
We recommend installing 🤗 Diffusers in a virtual environment from PyPI or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/#installation), please refer to their official documentation.
### PyTorch
With `pip` (official package):
```bash
pip install --upgrade diffusers[torch]
```
With `conda` (maintained by the community):
```sh
conda install -c conda-forge diffusers
```
### Flax
With `pip` (official package):
```bash
pip install --upgrade diffusers[flax]
```
### Apple Silicon (M1/M2) support
Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide.
## Quickstart
Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 25.000+ checkpoints):
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipeline.to("cuda")
pipeline("An image of a squirrel in Picasso style").images[0]
```
You can also dig into the models and schedulers toolbox to build your own diffusion system:
```python
from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch
scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
scheduler.set_timesteps(50)
sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device="cuda")
input = noise
for t in scheduler.timesteps:
with torch.no_grad():
noisy_residual = model(input, t).sample
prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
input = prev_noisy_sample
image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
image
```
Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today!
## How to navigate the documentation
| **Documentation** | **What can I learn?** |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [Tutorial](https://huggingface.co/docs/diffusers/tutorials/tutorial_overview) | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. |
| [Loading](https://huggingface.co/docs/diffusers/using-diffusers/loading_overview) | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. |
| [Pipelines for inference](https://huggingface.co/docs/diffusers/using-diffusers/pipeline_overview) | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. |
| [Optimization](https://huggingface.co/docs/diffusers/optimization/opt_overview) | Guides for how to optimize your diffusion model to run faster and consume less memory. |
| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. |
## Contribution
We ❤️ contributions from the open-source community!
If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md).
You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library.
- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute
- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines
- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22)
Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz98XR"><img alt="Join us on Discord" src="https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white"></a>. We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.
## Popular Tasks & Pipelines
<table>
<tr>
<th>Task</th>
<th>Pipeline</th>
<th>🤗 Hub</th>
</tr>
<tr style="border-top: 2px solid black">
<td>Unconditional Image Generation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/ddpm"> DDPM </a></td>
<td><a href="https://huggingface.co/google/ddpm-ema-church-256"> google/ddpm-ema-church-256 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img">Stable Diffusion Text-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/unclip">unCLIP</a></td>
<td><a href="https://huggingface.co/kakaobrain/karlo-v1-alpha"> kakaobrain/karlo-v1-alpha </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/deepfloyd_if">DeepFloyd IF</a></td>
<td><a href="https://huggingface.co/DeepFloyd/IF-I-XL-v1.0"> DeepFloyd/IF-I-XL-v1.0 </a></td>
</tr>
<tr>
<td>Text-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/kandinsky">Kandinsky</a></td>
<td><a href="https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder"> kandinsky-community/kandinsky-2-2-decoder </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/controlnet">ControlNet</a></td>
<td><a href="https://huggingface.co/lllyasviel/sd-controlnet-canny"> lllyasviel/sd-controlnet-canny </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/pix2pix">InstructPix2Pix</a></td>
<td><a href="https://huggingface.co/timbrooks/instruct-pix2pix"> timbrooks/instruct-pix2pix </a></td>
</tr>
<tr>
<td>Text-guided Image-to-Image</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/img2img">Stable Diffusion Image-to-Image</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-v1-5"> runwayml/stable-diffusion-v1-5 </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/image_variation">Stable Diffusion Image Variation</a></td>
<td><a href="https://huggingface.co/lambdalabs/sd-image-variations-diffusers"> lambdalabs/sd-image-variations-diffusers </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/upscale">Stable Diffusion Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler"> stabilityai/stable-diffusion-x4-upscaler </a></td>
</tr>
<tr>
<td>Super Resolution</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/latent_upscale">Stable Diffusion Latent Upscale</a></td>
<td><a href="https://huggingface.co/stabilityai/sd-x2-latent-upscaler"> stabilityai/sd-x2-latent-upscaler </a></td>
</tr>
</table>
## Popular libraries using 🧨 Diffusers
- https://github.com/microsoft/TaskMatrix
- https://github.com/invoke-ai/InvokeAI
- https://github.com/apple/ml-stable-diffusion
- https://github.com/Sanster/lama-cleaner
- https://github.com/IDEA-Research/Grounded-Segment-Anything
- https://github.com/ashawkey/stable-dreamfusion
- https://github.com/deep-floyd/IF
- https://github.com/bentoml/BentoML
- https://github.com/bmaltais/kohya_ss
- +11.000 other amazing GitHub repositories 💪
Thank you for using us ❤️.
## Credits
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion)
- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion)
- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim)
- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch)
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights.
## Citation
```bibtex
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
```
...@@ -86,9 +86,11 @@ To create the package for PyPI. ...@@ -86,9 +86,11 @@ To create the package for PyPI.
import os import os
import re import re
import sys import sys
import subprocess
from setuptools import Command, find_packages, setup from setuptools import Command, find_packages, setup
from typing import Optional, Union
from pathlib import Path
# IMPORTANT: # IMPORTANT:
# 1. all dependencies should be listed here with their version requirements if any # 1. all dependencies should be listed here with their version requirements if any
...@@ -252,11 +254,72 @@ install_requires = [ ...@@ -252,11 +254,72 @@ install_requires = [
version_range_max = max(sys.version_info[1], 10) + 1 version_range_max = max(sys.version_info[1], 10) + 1
def get_sha(ort_root: Union[str, Path]) -> str:
try:
return subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=ort_root).decode('ascii').strip()
except Exception:
return 'Unknown'
def get_abi():
try:
command = "echo '#include <string>' | gcc -x c++ -E -dM - | fgrep _GLIBCXX_USE_CXX11_ABI"
result = subprocess.run(command, shell=True, capture_output=True, text=True)
output = result.stdout.strip()
abi = "abi" + output.split(" ")[-1]
return abi
except Exception:
return 'abiUnknown'
def get_version_add(sha: Optional[str] = None) -> str:
version=''
ort_root = os.path.dirname(os.path.abspath(__file__))
add_version_path = os.path.join(ort_root, "DIFFUSERS_VERSION_NUMBER")
if sha != 'Unknown':
if sha is None:
sha = get_sha(ort_root)
version = 'git' + sha[:7]
# abi
version += "." + get_abi()
# dtk version
if os.getenv("ROCM_PATH"):
rocm_path = os.getenv('ROCM_PATH', "")
rocm_version_path = os.path.join(rocm_path, '.info', "rocm_version")
with open(rocm_version_path, 'r',encoding='utf-8') as file:
lines = file.readlines()
rocm_version=lines[0][:-2].replace(".", "")
version += ".dtk" + rocm_version
lines=[]
with open(add_version_path, 'r',encoding='utf-8') as file:
lines = file.readlines()
lines[0] = "__dcu_version__ = '0.29.0+das1.2.{}'\n".format(version)
with open(add_version_path, encoding="utf-8",mode="w") as file:
file.writelines(lines)
file.close()
init_path=os.path.join(ort_root, "src/diffusers/__init__.py")
with open(init_path, 'r',encoding='utf-8') as file:
lines = file.readlines()
lines[1] = "__dcu_version__ = '0.29.0.0+das1.2.{}'\n".format(version)
with open(init_path, encoding="utf-8",mode="w") as file:
file.writelines(lines)
file.close()
def get_version():
get_version_add()
ort_root = os.path.dirname(os.path.abspath(__file__))
version_file = os.path.join(ort_root, "DIFFUSERS_VERSION_NUMBER")
with open(version_file, encoding='utf-8') as f:
exec(compile(f.read(), version_file, 'exec'))
return locals()['__dcu_version__']
setup( setup(
name="diffusers", name="diffusers",
version="0.29.0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) version=get_version(), # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
description="State-of-the-art diffusion in PyTorch and JAX.", description="State-of-the-art diffusion in PyTorch and JAX.",
long_description=open("README.md", "r", encoding="utf-8").read(), long_description=open("README_ORIGIN.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
keywords="deep learning diffusion jax pytorch stable diffusion audioldm", keywords="deep learning diffusion jax pytorch stable diffusion audioldm",
license="Apache 2.0 License", license="Apache 2.0 License",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment