Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
1f4deb69
Unverified
Commit
1f4deb69
authored
Mar 03, 2023
by
Nicolas Patry
Committed by
GitHub
Mar 03, 2023
Browse files
Adding support for `safetensors` and LoRa. (#2448)
* Adding support for `safetensors` and LoRa. * Adding metadata.
parent
f20c8f5a
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
121 additions
and
18 deletions
+121
-18
src/diffusers/loaders.py
src/diffusers/loaders.py
+61
-18
tests/models/test_models_unet_2d_condition.py
tests/models/test_models_unet_2d_condition.py
+60
-0
No files found.
src/diffusers/loaders.py
View file @
1f4deb69
...
...
@@ -19,13 +19,18 @@ import torch
from
.models.cross_attention
import
LoRACrossAttnProcessor
from
.models.modeling_utils
import
_get_model_file
from
.utils
import
DIFFUSERS_CACHE
,
HF_HUB_OFFLINE
,
logging
from
.utils
import
DIFFUSERS_CACHE
,
HF_HUB_OFFLINE
,
is_safetensors_available
,
logging
if
is_safetensors_available
():
import
safetensors
logger
=
logging
.
get_logger
(
__name__
)
LORA_WEIGHT_NAME
=
"pytorch_lora_weights.bin"
LORA_WEIGHT_NAME_SAFE
=
"pytorch_lora_weights.safetensors"
class
AttnProcsLayers
(
torch
.
nn
.
Module
):
...
...
@@ -136,28 +141,53 @@ class UNet2DConditionLoadersMixin:
use_auth_token
=
kwargs
.
pop
(
"use_auth_token"
,
None
)
revision
=
kwargs
.
pop
(
"revision"
,
None
)
subfolder
=
kwargs
.
pop
(
"subfolder"
,
None
)
weight_name
=
kwargs
.
pop
(
"weight_name"
,
LORA_WEIGHT_NAME
)
weight_name
=
kwargs
.
pop
(
"weight_name"
,
None
)
user_agent
=
{
"file_type"
:
"attn_procs_weights"
,
"framework"
:
"pytorch"
,
}
model_file
=
None
if
not
isinstance
(
pretrained_model_name_or_path_or_dict
,
dict
):
model_file
=
_get_model_file
(
pretrained_model_name_or_path_or_dict
,
weights_name
=
weight_name
,
cache_dir
=
cache_dir
,
force_download
=
force_download
,
resume_download
=
resume_download
,
proxies
=
proxies
,
local_files_only
=
local_files_only
,
use_auth_token
=
use_auth_token
,
revision
=
revision
,
subfolder
=
subfolder
,
user_agent
=
user_agent
,
)
state_dict
=
torch
.
load
(
model_file
,
map_location
=
"cpu"
)
if
is_safetensors_available
():
if
weight_name
is
None
:
weight_name
=
LORA_WEIGHT_NAME_SAFE
try
:
model_file
=
_get_model_file
(
pretrained_model_name_or_path_or_dict
,
weights_name
=
weight_name
,
cache_dir
=
cache_dir
,
force_download
=
force_download
,
resume_download
=
resume_download
,
proxies
=
proxies
,
local_files_only
=
local_files_only
,
use_auth_token
=
use_auth_token
,
revision
=
revision
,
subfolder
=
subfolder
,
user_agent
=
user_agent
,
)
state_dict
=
safetensors
.
torch
.
load_file
(
model_file
,
device
=
"cpu"
)
except
EnvironmentError
:
if
weight_name
==
LORA_WEIGHT_NAME_SAFE
:
weight_name
=
None
if
model_file
is
None
:
if
weight_name
is
None
:
weight_name
=
LORA_WEIGHT_NAME
model_file
=
_get_model_file
(
pretrained_model_name_or_path_or_dict
,
weights_name
=
weight_name
,
cache_dir
=
cache_dir
,
force_download
=
force_download
,
resume_download
=
resume_download
,
proxies
=
proxies
,
local_files_only
=
local_files_only
,
use_auth_token
=
use_auth_token
,
revision
=
revision
,
subfolder
=
subfolder
,
user_agent
=
user_agent
,
)
state_dict
=
torch
.
load
(
model_file
,
map_location
=
"cpu"
)
else
:
state_dict
=
pretrained_model_name_or_path_or_dict
...
...
@@ -195,8 +225,9 @@ class UNet2DConditionLoadersMixin:
self
,
save_directory
:
Union
[
str
,
os
.
PathLike
],
is_main_process
:
bool
=
True
,
weights_name
:
str
=
LORA_WEIGHT_NAME
,
weights_name
:
str
=
None
,
save_function
:
Callable
=
None
,
safe_serialization
:
bool
=
False
,
):
r
"""
Save an attention processor to a directory, so that it can be re-loaded using the
...
...
@@ -219,7 +250,13 @@ class UNet2DConditionLoadersMixin:
return
if
save_function
is
None
:
save_function
=
torch
.
save
if
safe_serialization
:
def
save_function
(
weights
,
filename
):
return
safetensors
.
torch
.
save_file
(
weights
,
filename
,
metadata
=
{
"format"
:
"pt"
})
else
:
save_function
=
torch
.
save
os
.
makedirs
(
save_directory
,
exist_ok
=
True
)
...
...
@@ -237,6 +274,12 @@ class UNet2DConditionLoadersMixin:
if
filename
.
startswith
(
weights_no_suffix
)
and
os
.
path
.
isfile
(
full_filename
)
and
is_main_process
:
os
.
remove
(
full_filename
)
if
weights_name
is
None
:
if
safe_serialization
:
weights_name
=
LORA_WEIGHT_NAME_SAFE
else
:
weights_name
=
LORA_WEIGHT_NAME
# Save the model
save_function
(
state_dict
,
os
.
path
.
join
(
save_directory
,
weights_name
))
...
...
tests/models/test_models_unet_2d_condition.py
View file @
1f4deb69
...
...
@@ -14,6 +14,7 @@
# limitations under the License.
import
gc
import
os
import
tempfile
import
unittest
...
...
@@ -372,6 +373,65 @@ class UNet2DConditionModelTests(ModelTesterMixin, unittest.TestCase):
with
tempfile
.
TemporaryDirectory
()
as
tmpdirname
:
model
.
save_attn_procs
(
tmpdirname
)
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdirname
,
"pytorch_lora_weights.bin"
)))
torch
.
manual_seed
(
0
)
new_model
=
self
.
model_class
(
**
init_dict
)
new_model
.
to
(
torch_device
)
new_model
.
load_attn_procs
(
tmpdirname
)
with
torch
.
no_grad
():
new_sample
=
new_model
(
**
inputs_dict
,
cross_attention_kwargs
=
{
"scale"
:
0.5
}).
sample
assert
(
sample
-
new_sample
).
abs
().
max
()
<
1e-4
# LoRA and no LoRA should NOT be the same
assert
(
sample
-
old_sample
).
abs
().
max
()
>
1e-4
def
test_lora_save_load_safetensors
(
self
):
# enable deterministic behavior for gradient checkpointing
init_dict
,
inputs_dict
=
self
.
prepare_init_args_and_inputs_for_common
()
init_dict
[
"attention_head_dim"
]
=
(
8
,
16
)
torch
.
manual_seed
(
0
)
model
=
self
.
model_class
(
**
init_dict
)
model
.
to
(
torch_device
)
with
torch
.
no_grad
():
old_sample
=
model
(
**
inputs_dict
).
sample
lora_attn_procs
=
{}
for
name
in
model
.
attn_processors
.
keys
():
cross_attention_dim
=
None
if
name
.
endswith
(
"attn1.processor"
)
else
model
.
config
.
cross_attention_dim
if
name
.
startswith
(
"mid_block"
):
hidden_size
=
model
.
config
.
block_out_channels
[
-
1
]
elif
name
.
startswith
(
"up_blocks"
):
block_id
=
int
(
name
[
len
(
"up_blocks."
)])
hidden_size
=
list
(
reversed
(
model
.
config
.
block_out_channels
))[
block_id
]
elif
name
.
startswith
(
"down_blocks"
):
block_id
=
int
(
name
[
len
(
"down_blocks."
)])
hidden_size
=
model
.
config
.
block_out_channels
[
block_id
]
lora_attn_procs
[
name
]
=
LoRACrossAttnProcessor
(
hidden_size
=
hidden_size
,
cross_attention_dim
=
cross_attention_dim
)
lora_attn_procs
[
name
]
=
lora_attn_procs
[
name
].
to
(
model
.
device
)
# add 1 to weights to mock trained weights
with
torch
.
no_grad
():
lora_attn_procs
[
name
].
to_q_lora
.
up
.
weight
+=
1
lora_attn_procs
[
name
].
to_k_lora
.
up
.
weight
+=
1
lora_attn_procs
[
name
].
to_v_lora
.
up
.
weight
+=
1
lora_attn_procs
[
name
].
to_out_lora
.
up
.
weight
+=
1
model
.
set_attn_processor
(
lora_attn_procs
)
with
torch
.
no_grad
():
sample
=
model
(
**
inputs_dict
,
cross_attention_kwargs
=
{
"scale"
:
0.5
}).
sample
with
tempfile
.
TemporaryDirectory
()
as
tmpdirname
:
model
.
save_attn_procs
(
tmpdirname
,
safe_serialization
=
True
)
self
.
assertTrue
(
os
.
path
.
isfile
(
os
.
path
.
join
(
tmpdirname
,
"pytorch_lora_weights.safetensors"
)))
torch
.
manual_seed
(
0
)
new_model
=
self
.
model_class
(
**
init_dict
)
new_model
.
to
(
torch_device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment