Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
13001ee3
Unverified
Commit
13001ee3
authored
Feb 03, 2024
by
Fabio Rigano
Committed by
GitHub
Feb 03, 2024
Browse files
Bugfix in IPAdapterFaceID (#6835)
parent
65329aed
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
37 additions
and
44 deletions
+37
-44
examples/community/ip_adapter_face_id.py
examples/community/ip_adapter_face_id.py
+37
-44
No files found.
examples/community/ip_adapter_face_id.py
View file @
13001ee3
...
...
@@ -104,6 +104,22 @@ class LoRAIPAdapterAttnProcessor(nn.Module):
):
residual
=
hidden_states
# separate ip_hidden_states from encoder_hidden_states
if
encoder_hidden_states
is
not
None
:
if
isinstance
(
encoder_hidden_states
,
tuple
):
encoder_hidden_states
,
ip_hidden_states
=
encoder_hidden_states
else
:
deprecation_message
=
(
"You have passed a tensor as `encoder_hidden_states`.This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to supress this warning."
)
deprecate
(
"encoder_hidden_states not a tuple"
,
"1.0.0"
,
deprecation_message
,
standard_warn
=
False
)
end_pos
=
encoder_hidden_states
.
shape
[
1
]
-
self
.
num_tokens
[
0
]
encoder_hidden_states
,
ip_hidden_states
=
(
encoder_hidden_states
[:,
:
end_pos
,
:],
[
encoder_hidden_states
[:,
end_pos
:,
:]],
)
if
attn
.
spatial_norm
is
not
None
:
hidden_states
=
attn
.
spatial_norm
(
hidden_states
,
temb
)
...
...
@@ -125,15 +141,8 @@ class LoRAIPAdapterAttnProcessor(nn.Module):
if
encoder_hidden_states
is
None
:
encoder_hidden_states
=
hidden_states
else
:
# get encoder_hidden_states, ip_hidden_states
end_pos
=
encoder_hidden_states
.
shape
[
1
]
-
self
.
num_tokens
encoder_hidden_states
,
ip_hidden_states
=
(
encoder_hidden_states
[:,
:
end_pos
,
:],
encoder_hidden_states
[:,
end_pos
:,
:],
)
if
attn
.
norm_cross
:
encoder_hidden_states
=
attn
.
norm_encoder_hidden_states
(
encoder_hidden_states
)
elif
attn
.
norm_cross
:
encoder_hidden_states
=
attn
.
norm_encoder_hidden_states
(
encoder_hidden_states
)
key
=
attn
.
to_k
(
encoder_hidden_states
)
+
self
.
lora_scale
*
self
.
to_k_lora
(
encoder_hidden_states
)
value
=
attn
.
to_v
(
encoder_hidden_states
)
+
self
.
lora_scale
*
self
.
to_v_lora
(
encoder_hidden_states
)
...
...
@@ -233,6 +242,22 @@ class LoRAIPAdapterAttnProcessor2_0(nn.Module):
):
residual
=
hidden_states
# separate ip_hidden_states from encoder_hidden_states
if
encoder_hidden_states
is
not
None
:
if
isinstance
(
encoder_hidden_states
,
tuple
):
encoder_hidden_states
,
ip_hidden_states
=
encoder_hidden_states
else
:
deprecation_message
=
(
"You have passed a tensor as `encoder_hidden_states`.This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to supress this warning."
)
deprecate
(
"encoder_hidden_states not a tuple"
,
"1.0.0"
,
deprecation_message
,
standard_warn
=
False
)
end_pos
=
encoder_hidden_states
.
shape
[
1
]
-
self
.
num_tokens
[
0
]
encoder_hidden_states
,
ip_hidden_states
=
(
encoder_hidden_states
[:,
:
end_pos
,
:],
[
encoder_hidden_states
[:,
end_pos
:,
:]],
)
if
attn
.
spatial_norm
is
not
None
:
hidden_states
=
attn
.
spatial_norm
(
hidden_states
,
temb
)
...
...
@@ -259,15 +284,8 @@ class LoRAIPAdapterAttnProcessor2_0(nn.Module):
if
encoder_hidden_states
is
None
:
encoder_hidden_states
=
hidden_states
else
:
# get encoder_hidden_states, ip_hidden_states
end_pos
=
encoder_hidden_states
.
shape
[
1
]
-
self
.
num_tokens
encoder_hidden_states
,
ip_hidden_states
=
(
encoder_hidden_states
[:,
:
end_pos
,
:],
encoder_hidden_states
[:,
end_pos
:,
:],
)
if
attn
.
norm_cross
:
encoder_hidden_states
=
attn
.
norm_encoder_hidden_states
(
encoder_hidden_states
)
elif
attn
.
norm_cross
:
encoder_hidden_states
=
attn
.
norm_encoder_hidden_states
(
encoder_hidden_states
)
key
=
attn
.
to_k
(
encoder_hidden_states
)
+
self
.
lora_scale
*
self
.
to_k_lora
(
encoder_hidden_states
)
value
=
attn
.
to_v
(
encoder_hidden_states
)
+
self
.
lora_scale
*
self
.
to_v_lora
(
encoder_hidden_states
)
...
...
@@ -951,30 +969,6 @@ class IPAdapterFaceIDStableDiffusionPipeline(
return
prompt_embeds
,
negative_prompt_embeds
def
encode_image
(
self
,
image
,
device
,
num_images_per_prompt
,
output_hidden_states
=
None
):
dtype
=
next
(
self
.
image_encoder
.
parameters
()).
dtype
if
not
isinstance
(
image
,
torch
.
Tensor
):
image
=
self
.
feature_extractor
(
image
,
return_tensors
=
"pt"
).
pixel_values
image
=
image
.
to
(
device
=
device
,
dtype
=
dtype
)
if
output_hidden_states
:
image_enc_hidden_states
=
self
.
image_encoder
(
image
,
output_hidden_states
=
True
).
hidden_states
[
-
2
]
image_enc_hidden_states
=
image_enc_hidden_states
.
repeat_interleave
(
num_images_per_prompt
,
dim
=
0
)
uncond_image_enc_hidden_states
=
self
.
image_encoder
(
torch
.
zeros_like
(
image
),
output_hidden_states
=
True
).
hidden_states
[
-
2
]
uncond_image_enc_hidden_states
=
uncond_image_enc_hidden_states
.
repeat_interleave
(
num_images_per_prompt
,
dim
=
0
)
return
image_enc_hidden_states
,
uncond_image_enc_hidden_states
else
:
image_embeds
=
self
.
image_encoder
(
image
).
image_embeds
image_embeds
=
image_embeds
.
repeat_interleave
(
num_images_per_prompt
,
dim
=
0
)
uncond_image_embeds
=
torch
.
zeros_like
(
image_embeds
)
return
image_embeds
,
uncond_image_embeds
def
run_safety_checker
(
self
,
image
,
device
,
dtype
):
if
self
.
safety_checker
is
None
:
has_nsfw_concept
=
None
...
...
@@ -1302,7 +1296,6 @@ class IPAdapterFaceIDStableDiffusionPipeline(
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
image_embeds (`torch.FloatTensor`, *optional*):
Pre-generated image embeddings.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
...
...
@@ -1411,7 +1404,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
prompt_embeds
=
torch
.
cat
([
negative_prompt_embeds
,
prompt_embeds
])
if
image_embeds
is
not
None
:
image_embeds
=
image_embeds
.
repeat_interleave
(
num_images_per_prompt
,
dim
=
0
).
to
(
image_embeds
=
torch
.
stack
([
image_embeds
]
*
num_images_per_prompt
,
dim
=
0
).
to
(
device
=
device
,
dtype
=
prompt_embeds
.
dtype
)
negative_image_embeds
=
torch
.
zeros_like
(
image_embeds
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment