Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
1122c707
Unverified
Commit
1122c707
authored
Jun 09, 2022
by
Patrick von Platen
Committed by
GitHub
Jun 09, 2022
Browse files
Update README.md
parent
2852c805
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
5 deletions
+5
-5
README.md
README.md
+5
-5
No files found.
README.md
View file @
1122c707
...
@@ -50,8 +50,8 @@ for t in reversed(range(len(scheduler))):
...
@@ -50,8 +50,8 @@ for t in reversed(range(len(scheduler))):
pred_noise_t
=
self
.
unet
(
image
,
t
)
pred_noise_t
=
self
.
unet
(
image
,
t
)
# 2. compute alphas, betas
# 2. compute alphas, betas
alpha_prod_t
=
self
.
noise_
scheduler
.
get_alpha_prod
(
t
)
alpha_prod_t
=
scheduler
.
get_alpha_prod
(
t
)
alpha_prod_t_prev
=
self
.
noise_
scheduler
.
get_alpha_prod
(
t
-
1
)
alpha_prod_t_prev
=
scheduler
.
get_alpha_prod
(
t
-
1
)
beta_prod_t
=
1
-
alpha_prod_t
beta_prod_t
=
1
-
alpha_prod_t
beta_prod_t_prev
=
1
-
alpha_prod_t_prev
beta_prod_t_prev
=
1
-
alpha_prod_t_prev
...
@@ -65,8 +65,8 @@ for t in reversed(range(len(scheduler))):
...
@@ -65,8 +65,8 @@ for t in reversed(range(len(scheduler))):
# Third: Compute coefficients for pred_original_image x_0 and current image x_t
# Third: Compute coefficients for pred_original_image x_0 and current image x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_image_coeff
=
(
alpha_prod_t_prev
.
sqrt
()
*
self
.
noise_
scheduler
.
get_beta
(
t
))
/
beta_prod_t
pred_original_image_coeff
=
(
alpha_prod_t_prev
.
sqrt
()
*
scheduler
.
get_beta
(
t
))
/
beta_prod_t
current_image_coeff
=
self
.
noise_
scheduler
.
get_alpha
(
t
).
sqrt
()
*
beta_prod_t_prev
/
beta_prod_t
current_image_coeff
=
scheduler
.
get_alpha
(
t
).
sqrt
()
*
beta_prod_t_prev
/
beta_prod_t
# Fourth: Compute predicted previous image µ_t
# Fourth: Compute predicted previous image µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_image
=
pred_original_image_coeff
*
pred_original_image
+
current_image_coeff
*
image
pred_prev_image
=
pred_original_image_coeff
*
pred_original_image
+
current_image_coeff
*
image
...
@@ -76,7 +76,7 @@ for t in reversed(range(len(scheduler))):
...
@@ -76,7 +76,7 @@ for t in reversed(range(len(scheduler))):
# x_{t-1} ~ N(pred_prev_image, variance) == add variane to pred_image
# x_{t-1} ~ N(pred_prev_image, variance) == add variane to pred_image
if
t
>
0
:
if
t
>
0
:
variance
=
(
1
-
alpha_prod_t_prev
)
/
(
1
-
alpha_prod_t
)
*
self
.
noise_scheduler
.
get_beta
(
t
).
sqrt
()
variance
=
(
1
-
alpha_prod_t_prev
)
/
(
1
-
alpha_prod_t
)
*
self
.
noise_scheduler
.
get_beta
(
t
).
sqrt
()
noise
=
self
.
noise_
scheduler
.
sample_noise
(
image
.
shape
,
device
=
image
.
device
,
generator
=
generator
)
noise
=
scheduler
.
sample_noise
(
image
.
shape
,
device
=
image
.
device
,
generator
=
generator
)
prev_image
=
pred_prev_image
+
variance
*
noise
prev_image
=
pred_prev_image
+
variance
*
noise
else
:
else
:
prev_image
=
pred_prev_image
prev_image
=
pred_prev_image
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment