Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
0c6d1bc9
Unverified
Commit
0c6d1bc9
authored
Jun 22, 2023
by
Robert Dargavel Smith
Committed by
GitHub
Jun 22, 2023
Browse files
fix audio_diffusion tests (#3850)
parent
13e781f9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
2 deletions
+12
-2
tests/pipelines/audio_diffusion/test_audio_diffusion.py
tests/pipelines/audio_diffusion/test_audio_diffusion.py
+12
-2
No files found.
tests/pipelines/audio_diffusion/test_audio_diffusion.py
View file @
0c6d1bc9
...
...
@@ -99,7 +99,10 @@ class PipelineFastTests(unittest.TestCase):
@
slow
def
test_audio_diffusion
(
self
):
device
=
"cpu"
# ensure determinism for the device-dependent torch.Generator
mel
=
Mel
()
mel
=
Mel
(
x_res
=
self
.
dummy_unet
.
config
.
sample_size
[
1
],
y_res
=
self
.
dummy_unet
.
config
.
sample_size
[
0
],
)
scheduler
=
DDPMScheduler
()
pipe
=
AudioDiffusionPipeline
(
vqvae
=
None
,
unet
=
self
.
dummy_unet
,
mel
=
mel
,
scheduler
=
scheduler
)
...
...
@@ -127,6 +130,11 @@ class PipelineFastTests(unittest.TestCase):
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
==
0
assert
np
.
abs
(
image_from_tuple_slice
.
flatten
()
-
expected_slice
).
max
()
==
0
mel
=
Mel
(
x_res
=
self
.
dummy_vqvae_and_unet
[
0
].
config
.
sample_size
[
1
],
y_res
=
self
.
dummy_vqvae_and_unet
[
0
].
config
.
sample_size
[
0
],
)
scheduler
=
DDIMScheduler
()
dummy_vqvae_and_unet
=
self
.
dummy_vqvae_and_unet
pipe
=
AudioDiffusionPipeline
(
...
...
@@ -154,13 +162,15 @@ class PipelineFastTests(unittest.TestCase):
pipe
=
AudioDiffusionPipeline
(
vqvae
=
self
.
dummy_vqvae_and_unet
[
0
],
unet
=
dummy_unet_condition
,
mel
=
mel
,
scheduler
=
scheduler
)
pipe
=
pipe
.
to
(
device
)
pipe
.
set_progress_bar_config
(
disable
=
None
)
np
.
random
.
seed
(
0
)
encoding
=
torch
.
rand
((
1
,
1
,
10
))
output
=
pipe
(
generator
=
generator
,
encoding
=
encoding
)
image
=
output
.
images
[
0
]
image_slice
=
np
.
frombuffer
(
image
.
tobytes
(),
dtype
=
"uint8"
)[:
10
]
expected_slice
=
np
.
array
([
1
2
0
,
13
9
,
1
47
,
12
3
,
1
24
,
96
,
11
5
,
12
1
,
126
,
1
44
])
expected_slice
=
np
.
array
([
10
7
,
1
0
3
,
1
20
,
12
7
,
1
42
,
122
,
11
3
,
12
2
,
97
,
1
11
])
assert
np
.
abs
(
image_slice
.
flatten
()
-
expected_slice
).
max
()
==
0
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment