test_controlnet_img2img.py 16.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import gc
import random
import tempfile
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
    StableDiffusionControlNetImg2ImgPipeline,
    UNet2DConditionModel,
)
35
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
Dhruv Nair's avatar
Dhruv Nair committed
36
from diffusers.utils import load_image
37
from diffusers.utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
38
39
40
41
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_numpy,
42
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
43
44
45
46
47
    require_torch_gpu,
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
48
49

from ..pipeline_params import (
50
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
51
52
53
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
54
55
56
57
58
from ..test_pipelines_common import (
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
59
60


61
enable_full_determinism()
62
63


64
65
66
class ControlNetImg2ImgPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
67
68
69
    pipeline_class = StableDiffusionControlNetImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
70
71
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"})
    image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
72
73
74
75

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
76
            block_out_channels=(4, 8),
77
78
79
80
81
82
83
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
84
            norm_num_groups=1,
85
86
87
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
88
            block_out_channels=(4, 8),
89
90
91
92
93
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
94
            norm_num_groups=1,
95
96
97
98
99
100
101
102
103
104
105
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
106
            block_out_channels=[4, 8],
107
108
109
110
111
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
112
            norm_num_groups=2,
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
138
            "image_encoder": None,
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        control_image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )
        image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
            "image": image,
            "control_image": control_image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)


183
184
185
class StableDiffusionMultiControlNetPipelineFastTests(
    PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
186
187
188
189
190
191
192
193
    pipeline_class = StableDiffusionControlNetImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
194
            block_out_channels=(4, 8),
195
196
197
198
199
200
201
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
202
            norm_num_groups=1,
203
204
        )
        torch.manual_seed(0)
205
206
207
208
209
210

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
                torch.nn.init.normal(m.weight)
                m.bias.data.fill_(1.0)

211
        controlnet1 = ControlNetModel(
212
            block_out_channels=(4, 8),
213
214
215
216
217
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
218
            norm_num_groups=1,
219
        )
220
221
        controlnet1.controlnet_down_blocks.apply(init_weights)

222
223
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
224
            block_out_channels=(4, 8),
225
226
227
228
229
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
230
            norm_num_groups=1,
231
        )
232
233
        controlnet2.controlnet_down_blocks.apply(init_weights)

234
235
236
237
238
239
240
241
242
243
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
244
            block_out_channels=[4, 8],
245
246
247
248
249
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
250
            norm_num_groups=2,
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
278
            "image_encoder": None,
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        control_image = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
            "image": image,
            "control_image": control_image,
        }

        return inputs

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


@slow
@require_torch_gpu
class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "evil space-punk bird"
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        image = load_image(
            "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
        ).resize((512, 512))

        output = pipe(
            prompt,
            image,
            control_image=control_image,
            generator=generator,
            output_type="np",
            num_inference_steps=50,
            strength=0.6,
        )

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy"
        )

        assert np.abs(expected_image - image).max() < 9e-2
422
423
424

    def test_load_local(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
425
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
426
427
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
428
429
        pipe.unet.set_default_attn_processor()
        pipe.enable_model_cpu_offload()
430
431
432
433

        controlnet = ControlNetModel.from_single_file(
            "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
        )
434
        pipe_sf = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
435
436
437
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            safety_checker=None,
            controlnet=controlnet,
438
            scheduler_type="pndm",
439
        )
440
441
442
        pipe_sf.unet.set_default_attn_processor()
        pipe_sf.enable_model_cpu_offload()

443
444
445
446
447
448
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        image = load_image(
            "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
        ).resize((512, 512))
449
        prompt = "bird"
450

451
452
453
454
455
456
457
458
459
460
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            prompt,
            image=image,
            control_image=control_image,
            strength=0.9,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        ).images[0]
461

462
463
464
465
466
467
468
469
470
471
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_sf = pipe_sf(
            prompt,
            image=image,
            control_image=control_image,
            strength=0.9,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        ).images[0]
472

473
474
        max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
        assert max_diff < 1e-3