test_schedulers.py 36.8 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import tempfile
import unittest
20
import uuid
21
22
23
24
from typing import Dict, List, Tuple

import numpy as np
import torch
25
from huggingface_hub import delete_repo
26
27
28

import diffusers
from diffusers import (
29
    CMStochasticIterativeScheduler,
30
31
32
    DDIMScheduler,
    DEISMultistepScheduler,
    DiffusionPipeline,
Suraj Patil's avatar
Suraj Patil committed
33
    EDMEulerScheduler,
34
35
36
37
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    IPNDMScheduler,
    LMSDiscreteScheduler,
38
    UniPCMultistepScheduler,
39
40
41
42
    VQDiffusionScheduler,
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
43
from diffusers.utils import logging
Dhruv Nair's avatar
Dhruv Nair committed
44
from diffusers.utils.testing_utils import CaptureLogger, torch_device
45

46
47
from ..others.test_utils import TOKEN, USER, is_staging_test

48
49
50
51

torch.backends.cuda.matmul.allow_tf32 = False


52
53
54
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
class SchedulerObject(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
    ):
        pass


class SchedulerObject2(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        f=[1, 3],
    ):
        pass


class SchedulerObject3(SchedulerMixin, ConfigMixin):
    config_name = "config.json"

    @register_to_config
    def __init__(
        self,
        a=2,
        b=5,
        c=(2, 5),
        d="for diffusion",
        e=[1, 3],
        f=[1, 3],
    ):
        pass


class SchedulerBaseTests(unittest.TestCase):
    def test_save_load_from_different_config(self):
        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)
            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_1 = SchedulerObject2.from_config(config)

            # now save a config parameter that is not expected
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_2 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_3 = SchedulerObject2.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject2
        assert new_obj_2.__class__ == SchedulerObject
        assert new_obj_3.__class__ == SchedulerObject2

        assert cap_logger_1.out == ""
        assert (
            cap_logger_2.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )
        assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out

    def test_save_load_compatible_schedulers(self):
        SchedulerObject2._compatibles = ["SchedulerObject"]
        SchedulerObject._compatibles = ["SchedulerObject2"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        logger = logging.get_logger("diffusers.configuration_utils")

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            # now save a config parameter that is expected by another class, but not origin class
            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f:
                data = json.load(f)
                data["f"] = [0, 0]
                data["unexpected"] = True

            with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f:
                json.dump(data, f)

            with CaptureLogger(logger) as cap_logger:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj = SchedulerObject.from_config(config)

        assert new_obj.__class__ == SchedulerObject

        assert (
            cap_logger.out
            == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and"
            " will"
            " be ignored. Please verify your config.json configuration file.\n"
        )

    def test_save_load_from_different_config_comp_schedulers(self):
        SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"]
        SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"]
        SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"]

        obj = SchedulerObject()

        # mock add obj class to `diffusers`
        setattr(diffusers, "SchedulerObject", SchedulerObject)
        setattr(diffusers, "SchedulerObject2", SchedulerObject2)
        setattr(diffusers, "SchedulerObject3", SchedulerObject3)
        logger = logging.get_logger("diffusers.configuration_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdirname:
            obj.save_config(tmpdirname)

            with CaptureLogger(logger) as cap_logger_1:
                config = SchedulerObject.load_config(tmpdirname)
                new_obj_1 = SchedulerObject.from_config(config)

            with CaptureLogger(logger) as cap_logger_2:
                config = SchedulerObject2.load_config(tmpdirname)
                new_obj_2 = SchedulerObject2.from_config(config)

            with CaptureLogger(logger) as cap_logger_3:
                config = SchedulerObject3.load_config(tmpdirname)
                new_obj_3 = SchedulerObject3.from_config(config)

        assert new_obj_1.__class__ == SchedulerObject
        assert new_obj_2.__class__ == SchedulerObject2
        assert new_obj_3.__class__ == SchedulerObject3

        assert cap_logger_1.out == ""
        assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n"
        assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n"

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    def test_default_arguments_not_in_config(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16
        )
        assert pipe.scheduler.__class__ == DDIMScheduler

        # Default for DDIMScheduler
        assert pipe.scheduler.config.timestep_spacing == "leading"

        # Switch to a different one, verify we use the default for that class
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
        assert pipe.scheduler.config.timestep_spacing == "linspace"

        # Override with kwargs
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
        assert pipe.scheduler.config.timestep_spacing == "trailing"

        # Verify overridden kwargs stick
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        assert pipe.scheduler.config.timestep_spacing == "trailing"

        # And stick
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        assert pipe.scheduler.config.timestep_spacing == "trailing"

    def test_default_solver_type_after_switch(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16
        )
        assert pipe.scheduler.__class__ == DDIMScheduler

        pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
        assert pipe.scheduler.config.solver_type == "logrho"

        # Switch to UniPC, verify the solver is the default
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        assert pipe.scheduler.config.solver_type == "bh2"

255
256
257
258
259

class SchedulerCommonTest(unittest.TestCase):
    scheduler_classes = ()
    forward_default_kwargs = ()

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    @property
    def default_num_inference_steps(self):
        return 50

    @property
    def default_timestep(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps)

        try:
            scheduler_config = self.get_scheduler_config()
            scheduler = self.scheduler_classes[0](**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)
            timestep = scheduler.timesteps[0]
        except NotImplementedError:
            logger.warning(
                f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method."
                f" `default_timestep` will be set to the default value of 1."
            )
            timestep = 1

        return timestep

    # NOTE: currently taking the convention that default_timestep > default_timestep_2 (alternatively,
    # default_timestep comes earlier in the timestep schedule than default_timestep_2)
    @property
    def default_timestep_2(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps)

        try:
            scheduler_config = self.get_scheduler_config()
            scheduler = self.scheduler_classes[0](**scheduler_config)

            scheduler.set_timesteps(num_inference_steps)
            if len(scheduler.timesteps) >= 2:
                timestep_2 = scheduler.timesteps[1]
            else:
                logger.warning(
                    f"Using num_inference_steps from the scheduler testing class's default config leads to a timestep"
                    f" scheduler of length {len(scheduler.timesteps)} < 2. The default `default_timestep_2` value of 0"
                    f" will be used."
                )
                timestep_2 = 0
        except NotImplementedError:
            logger.warning(
                f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method."
                f" `default_timestep_2` will be set to the default value of 0."
            )
            timestep_2 = 0

        return timestep_2

314
315
316
317
318
319
320
321
322
323
324
    @property
    def dummy_sample(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        sample = torch.rand((batch_size, num_channels, height, width))

        return sample

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    @property
    def dummy_noise_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems).flip(-1)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    @property
    def dummy_sample_deter(self):
        batch_size = 4
        num_channels = 3
        height = 8
        width = 8

        num_elems = batch_size * num_channels * height * width
        sample = torch.arange(num_elems)
        sample = sample.reshape(num_channels, height, width, batch_size)
        sample = sample / num_elems
        sample = sample.permute(3, 0, 1, 2)

        return sample

    def get_scheduler_config(self):
        raise NotImplementedError

    def dummy_model(self):
        def model(sample, t, *args):
360
361
362
363
364
365
            # if t is a tensor, match the number of dimensions of sample
            if isinstance(t, torch.Tensor):
                num_dims = len(sample.shape)
                # pad t with 1s to match num_dims
                t = t.reshape(-1, *(1,) * (num_dims - 1)).to(sample.device).to(sample.dtype)

366
367
368
369
370
371
372
373
            return sample * t / (t + 1)

        return model

    def check_over_configs(self, time_step=0, **config):
        kwargs = dict(self.forward_default_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)
374
        time_step = time_step if time_step is not None else self.default_timestep
375
376
377
378
379
380
381
382
383

        for scheduler_class in self.scheduler_classes:
            # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

            scheduler_config = self.get_scheduler_config(**config)
            scheduler = scheduler_class(**scheduler_config)

384
385
386
387
388
            if scheduler_class == CMStochasticIterativeScheduler:
                # Get valid timestep based on sigma_max, which should always be in timestep schedule.
                scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
                time_step = scaled_sigma_max

Suraj Patil's avatar
Suraj Patil committed
389
390
391
            if scheduler_class == EDMEulerScheduler:
                time_step = scheduler.timesteps[-1]

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # Make sure `scale_model_input` is invoked to prevent a warning
412
413
414
415
416
            if scheduler_class == CMStochasticIterativeScheduler:
                # Get valid timestep based on sigma_max, which should always be in timestep schedule.
                _ = scheduler.scale_model_input(sample, scaled_sigma_max)
                _ = new_scheduler.scale_model_input(sample, scaled_sigma_max)
            elif scheduler_class != VQDiffusionScheduler:
Suraj Patil's avatar
Suraj Patil committed
417
418
                _ = scheduler.scale_model_input(sample, scheduler.timesteps[-1])
                _ = new_scheduler.scale_model_input(sample, scheduler.timesteps[-1])
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

            # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def check_over_forward(self, time_step=0, **forward_kwargs):
        kwargs = dict(self.forward_default_kwargs)
        kwargs.update(forward_kwargs)

        num_inference_steps = kwargs.pop("num_inference_steps", None)
436
        time_step = time_step if time_step is not None else self.default_timestep
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

        for scheduler_class in self.scheduler_classes:
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                time_step = float(time_step)

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, time_step)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_from_save_pretrained(self):
        kwargs = dict(self.forward_default_kwargs)

477
        num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps)
478
479

        for scheduler_class in self.scheduler_classes:
480
            timestep = self.default_timestep
481
482
483
484
485
486
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

487
488
489
490
            if scheduler_class == CMStochasticIterativeScheduler:
                # Get valid timestep based on sigma_max, which should always be in timestep schedule.
                timestep = scheduler.sigma_to_t(scheduler.config.sigma_max)

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_config(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
                new_scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample

            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample

            assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"

    def test_compatibles(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            assert all(c is not None for c in scheduler.compatibles)

            for comp_scheduler_cls in scheduler.compatibles:
                comp_scheduler = comp_scheduler_cls.from_config(scheduler.config)
                assert comp_scheduler is not None

            new_scheduler = scheduler_class.from_config(comp_scheduler.config)

            new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config}
            scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config}

            # make sure that configs are essentially identical
            assert new_scheduler_config == dict(scheduler.config)

            # make sure that only differences are for configs that are not in init
            init_keys = inspect.signature(scheduler_class.__init__).parameters.keys()
            assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set()

    def test_from_pretrained(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()

            scheduler = scheduler_class(**scheduler_config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

554
555
556
557
558
            # `_use_default_values` should not exist for just saved & loaded scheduler
            scheduler_config = dict(scheduler.config)
            del scheduler_config["_use_default_values"]

            assert scheduler_config == new_scheduler.config
559
560
561
562

    def test_step_shape(self):
        kwargs = dict(self.forward_default_kwargs)

563
        num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps)
564

565
566
        timestep_0 = self.default_timestep
        timestep_1 = self.default_timestep_2
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

        for scheduler_class in self.scheduler_classes:
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep_0 = float(timestep_0)
                timestep_1 = float(timestep_1)

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep_0)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
            output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample

            self.assertEqual(output_0.shape, sample.shape)
            self.assertEqual(output_0.shape, output_1.shape)

    def test_scheduler_outputs_equivalence(self):
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

        def recursive_check(tuple_object, dict_object):
            if isinstance(tuple_object, (List, Tuple)):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif isinstance(tuple_object, Dict):
                for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
                    recursive_check(tuple_iterable_value, dict_iterable_value)
            elif tuple_object is None:
                return
            else:
                self.assertTrue(
                    torch.allclose(
                        set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                    ),
                    msg=(
                        "Tuple and dict output are not equal. Difference:"
                        f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                        f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                        f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                    ),
                )

        kwargs = dict(self.forward_default_kwargs)
624
        num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps)
625

626
        timestep = self.default_timestep
627
628
629
630
631
632
633
634
635
636
        if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler:
            timestep = 1

        for scheduler_class in self.scheduler_classes:
            if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler):
                timestep = float(timestep)

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

637
638
639
640
            if scheduler_class == CMStochasticIterativeScheduler:
                # Get valid timestep based on sigma_max, which should always be in timestep schedule.
                timestep = scheduler.sigma_to_t(scheduler.config.sigma_max)

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
            if scheduler_class == VQDiffusionScheduler:
                num_vec_classes = scheduler_config["num_vec_classes"]
                sample = self.dummy_sample(num_vec_classes)
                model = self.dummy_model(num_vec_classes)
                residual = model(sample, timestep)
            else:
                sample = self.dummy_sample
                residual = 0.1 * sample

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)

            if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
                scheduler.set_timesteps(num_inference_steps)
            elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
                kwargs["num_inference_steps"] = num_inference_steps

            # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
            if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
                kwargs["generator"] = torch.manual_seed(0)
            outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)

            recursive_check(outputs_tuple, outputs_dict)

    def test_scheduler_public_api(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            if scheduler_class != VQDiffusionScheduler:
                self.assertTrue(
                    hasattr(scheduler, "init_noise_sigma"),
                    f"{scheduler_class} does not implement a required attribute `init_noise_sigma`",
                )
                self.assertTrue(
                    hasattr(scheduler, "scale_model_input"),
                    (
                        f"{scheduler_class} does not implement a required class method `scale_model_input(sample,"
                        " timestep)`"
                    ),
                )
            self.assertTrue(
                hasattr(scheduler, "step"),
                f"{scheduler_class} does not implement a required class method `step(...)`",
            )

            if scheduler_class != VQDiffusionScheduler:
                sample = self.dummy_sample
696
697
698
699
                if scheduler_class == CMStochasticIterativeScheduler:
                    # Get valid timestep based on sigma_max, which should always be in timestep schedule.
                    scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
                    scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max)
Suraj Patil's avatar
Suraj Patil committed
700
701
                elif scheduler_class == EDMEulerScheduler:
                    scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1])
702
703
                else:
                    scaled_sample = scheduler.scale_model_input(sample, 0.0)
704
705
706
707
708
709
710
711
                self.assertEqual(sample.shape, scaled_sample.shape)

    def test_add_noise_device(self):
        for scheduler_class in self.scheduler_classes:
            if scheduler_class == IPNDMScheduler:
                continue
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)
712
            scheduler.set_timesteps(self.default_num_inference_steps)
713
714

            sample = self.dummy_sample.to(torch_device)
715
716
717
718
            if scheduler_class == CMStochasticIterativeScheduler:
                # Get valid timestep based on sigma_max, which should always be in timestep schedule.
                scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max)
                scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max)
Suraj Patil's avatar
Suraj Patil committed
719
720
            if scheduler_class == EDMEulerScheduler:
                scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1])
721
722
            else:
                scaled_sample = scheduler.scale_model_input(sample, 0.0)
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
            self.assertEqual(sample.shape, scaled_sample.shape)

            noise = torch.randn_like(scaled_sample).to(torch_device)
            t = scheduler.timesteps[5][None]
            noised = scheduler.add_noise(scaled_sample, noise, t)
            self.assertEqual(noised.shape, scaled_sample.shape)

    def test_deprecated_kwargs(self):
        for scheduler_class in self.scheduler_classes:
            has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters
            has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0

            if has_kwarg_in_model_class and not has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if"
                    " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
                    " [<deprecated_argument>]`"
                )

            if not has_kwarg_in_model_class and has_deprecated_kwarg:
                raise ValueError(
                    f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated"
                    " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`"
                    f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the"
                    " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`"
                )

    def test_trained_betas(self):
        for scheduler_class in self.scheduler_classes:
753
            if scheduler_class in (VQDiffusionScheduler, CMStochasticIterativeScheduler):
754
755
756
757
758
759
760
761
762
763
                continue

            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3]))

            with tempfile.TemporaryDirectory() as tmpdirname:
                scheduler.save_pretrained(tmpdirname)
                new_scheduler = scheduler_class.from_pretrained(tmpdirname)

            assert scheduler.betas.tolist() == new_scheduler.betas.tolist()
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

    def test_getattr_is_correct(self):
        for scheduler_class in self.scheduler_classes:
            scheduler_config = self.get_scheduler_config()
            scheduler = scheduler_class(**scheduler_config)

            # save some things to test
            scheduler.dummy_attribute = 5
            scheduler.register_to_config(test_attribute=5)

            logger = logging.get_logger("diffusers.configuration_utils")
            # 30 for warning
            logger.setLevel(30)
            with CaptureLogger(logger) as cap_logger:
                assert hasattr(scheduler, "dummy_attribute")
                assert getattr(scheduler, "dummy_attribute") == 5
                assert scheduler.dummy_attribute == 5

            # no warning should be thrown
            assert cap_logger.out == ""

            logger = logging.get_logger("diffusers.schedulers.schedulering_utils")
            # 30 for warning
            logger.setLevel(30)
            with CaptureLogger(logger) as cap_logger:
                assert hasattr(scheduler, "save_pretrained")
                fn = scheduler.save_pretrained
                fn_1 = getattr(scheduler, "save_pretrained")

                assert fn == fn_1
            # no warning should be thrown
            assert cap_logger.out == ""

            # warning should be thrown
            with self.assertWarns(FutureWarning):
                assert scheduler.test_attribute == 5

            with self.assertWarns(FutureWarning):
                assert getattr(scheduler, "test_attribute") == 5

            with self.assertRaises(AttributeError) as error:
                scheduler.does_not_exist

            assert str(error.exception) == f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'"
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868


@is_staging_test
class SchedulerPushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-scheduler-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def test_push_to_hub(self):
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        scheduler.push_to_hub(self.repo_id, token=TOKEN)
        scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}")

        assert type(scheduler) == type(scheduler_loaded)

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_config
        with tempfile.TemporaryDirectory() as tmp_dir:
            scheduler.save_config(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}")

        assert type(scheduler) == type(scheduler_loaded)

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

    def test_push_to_hub_in_organization(self):
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        scheduler.push_to_hub(self.org_repo_id, token=TOKEN)
        scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id)

        assert type(scheduler) == type(scheduler_loaded)

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_config
        with tempfile.TemporaryDirectory() as tmp_dir:
            scheduler.save_config(tmp_dir, repo_id=self.org_repo_id, push_to_hub=True, token=TOKEN)

        scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id)

        assert type(scheduler) == type(scheduler_loaded)

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)