train_text_to_image.py 32.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import copy
18
19
20
21
22
import logging
import math
import os
import random
from pathlib import Path
23
from typing import Iterable, Optional
24
25
26
27
28
29

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint

30
31
32
import datasets
import diffusers
import transformers
33
34
35
36
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
37
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
38
from diffusers.optimization import get_scheduler
39
from diffusers.utils import check_min_version
40
from diffusers.utils.import_utils import is_xformers_available
41
42
43
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
44
from transformers import CLIPTextModel, CLIPTokenizer
45
46


47
48
49
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

50
logger = get_logger(__name__, log_level="INFO")
51
52
53
54
55
56
57
58
59
60
61


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
62
63
64
65
66
67
68
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing an image."
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="sd-model-finetuned",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop",
        action="store_true",
        help="Whether to center crop images before resizing to resolution (if not set, random crop will be used)",
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
193
194
195
196
197
198
199
200
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
201
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
202
203
204
205
206
207
208
209
210
211
    parser.add_argument(
        "--non_ema_revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
            " remote repository specified with --pretrained_model_name_or_path."
        ),
    )
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
237
        default=None,
238
239
        choices=["no", "fp16", "bf16"],
        help=(
240
241
242
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
243
244
245
246
247
248
249
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
250
251
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
252
253
254
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
273
274
275
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
276
277
278
279
280
281
282
283
284
285

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # Sanity checks
    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Need either a dataset name or a training folder.")

286
287
288
289
    # default to using the same revision for the non-ema model if not specified
    if args.non_ema_revision is None:
        args.non_ema_revision = args.revision

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


dataset_name_mapping = {
    "lambdalabs/pokemon-blip-captions": ("image", "text"),
}


308
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
309
310
311
312
313
class EMAModel:
    """
    Exponential Moving Average of models weights
    """

314
315
316
    def __init__(self, parameters: Iterable[torch.nn.Parameter], decay=0.9999):
        parameters = list(parameters)
        self.shadow_params = [p.clone().detach() for p in parameters]
317

318
319
        self.collected_params = None

320
321
322
323
        self.decay = decay
        self.optimization_step = 0

    @torch.no_grad()
324
325
    def step(self, parameters):
        parameters = list(parameters)
326
327

        self.optimization_step += 1
Pedro Cuenca's avatar
Pedro Cuenca committed
328
329
330
331

        # Compute the decay factor for the exponential moving average.
        value = (1 + self.optimization_step) / (10 + self.optimization_step)
        one_minus_decay = 1 - min(self.decay, value)
332

333
        for s_param, param in zip(self.shadow_params, parameters):
334
            if param.requires_grad:
Pedro Cuenca's avatar
Pedro Cuenca committed
335
                s_param.sub_(one_minus_decay * (s_param - param))
336
            else:
337
                s_param.copy_(param)
338
339
340

        torch.cuda.empty_cache()

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
        """
        Copy current averaged parameters into given collection of parameters.

        Args:
            parameters: Iterable of `torch.nn.Parameter`; the parameters to be
                updated with the stored moving averages. If `None`, the
                parameters with which this `ExponentialMovingAverage` was
                initialized will be used.
        """
        parameters = list(parameters)
        for s_param, param in zip(self.shadow_params, parameters):
            param.data.copy_(s_param.data)

    def to(self, device=None, dtype=None) -> None:
        r"""Move internal buffers of the ExponentialMovingAverage to `device`.

        Args:
            device: like `device` argument to `torch.Tensor.to`
        """
        # .to() on the tensors handles None correctly
        self.shadow_params = [
            p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
            for p in self.shadow_params
        ]

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    def state_dict(self) -> dict:
        r"""
        Returns the state of the ExponentialMovingAverage as a dict.
        This method is used by accelerate during checkpointing to save the ema state dict.
        """
        # Following PyTorch conventions, references to tensors are returned:
        # "returns a reference to the state and not its copy!" -
        # https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
        return {
            "decay": self.decay,
            "optimization_step": self.optimization_step,
            "shadow_params": self.shadow_params,
            "collected_params": self.collected_params,
        }

    def load_state_dict(self, state_dict: dict) -> None:
        r"""
        Loads the ExponentialMovingAverage state.
        This method is used by accelerate during checkpointing to save the ema state dict.
        Args:
            state_dict (dict): EMA state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # deepcopy, to be consistent with module API
        state_dict = copy.deepcopy(state_dict)

        self.decay = state_dict["decay"]
        if self.decay < 0.0 or self.decay > 1.0:
            raise ValueError("Decay must be between 0 and 1")

        self.optimization_step = state_dict["optimization_step"]
        if not isinstance(self.optimization_step, int):
            raise ValueError("Invalid optimization_step")

        self.shadow_params = state_dict["shadow_params"]
        if not isinstance(self.shadow_params, list):
            raise ValueError("shadow_params must be a list")
        if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
            raise ValueError("shadow_params must all be Tensors")

        self.collected_params = state_dict["collected_params"]
        if self.collected_params is not None:
            if not isinstance(self.collected_params, list):
                raise ValueError("collected_params must be a list")
            if not all(isinstance(p, torch.Tensor) for p in self.collected_params):
                raise ValueError("collected_params must all be Tensors")
            if len(self.collected_params) != len(self.shadow_params):
                raise ValueError("collected_params and shadow_params must have the same length")

416
417
418
419
420
421
422
423
424
425
426
427

def main():
    args = parse_args()
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        logging_dir=logging_dir,
    )

Suraj Patil's avatar
Suraj Patil committed
428
    # Make one log on every process with the configuration for debugging.
429
430
431
432
433
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
434
435
436
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
Suraj Patil's avatar
Suraj Patil committed
437
        transformers.utils.logging.set_verbosity_warning()
438
439
440
441
442
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

465
466
    # Load scheduler, tokenizer and models.
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
467
468
469
470
    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )
    text_encoder = CLIPTextModel.from_pretrained(
471
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
472
    )
473
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
474
    unet = UNet2DConditionModel.from_pretrained(
475
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision
476
    )
477

478
479
480
481
482
483
484
485
486
487
488
    # Freeze vae and text_encoder
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    # Create EMA for the unet.
    if args.use_ema:
        ema_unet = UNet2DConditionModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
        )
        ema_unet = EMAModel(ema_unet.parameters())

489
490
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
491
            unet.enable_xformers_memory_efficient_attention()
492
493
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
494

495
496
497
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

498
499
500
501
502
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    optimizer = optimizer_cls(
        unet.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
        )
    else:
        data_files = {}
        if args.train_data_dir is not None:
            data_files["train"] = os.path.join(args.train_data_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    dataset_columns = dataset_name_mapping.get(args.dataset_name, None)
    if args.image_column is None:
        image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        image_column = args.image_column
        if image_column not in column_names:
            raise ValueError(
                f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.caption_column is None:
        caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        caption_column = args.caption_column
        if caption_column not in column_names:
            raise ValueError(
                f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Preprocessing the datasets.
    # We need to tokenize input captions and transform the images.
    def tokenize_captions(examples, is_train=True):
        captions = []
        for caption in examples[caption_column]:
            if isinstance(caption, str):
                captions.append(caption)
            elif isinstance(caption, (list, np.ndarray)):
                # take a random caption if there are multiple
                captions.append(random.choice(caption) if is_train else caption[0])
            else:
                raise ValueError(
                    f"Caption column `{caption_column}` should contain either strings or lists of strings."
                )
590
591
592
593
        inputs = tokenizer(
            captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
        )
        return inputs.input_ids
594

Suraj Patil's avatar
Suraj Patil committed
595
    # Preprocessing the datasets.
596
597
    train_transforms = transforms.Compose(
        [
598
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    def preprocess_train(examples):
        images = [image.convert("RGB") for image in examples[image_column]]
        examples["pixel_values"] = [train_transforms(image) for image in images]
        examples["input_ids"] = tokenize_captions(examples)
        return examples

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)

    def collate_fn(examples):
        pixel_values = torch.stack([example["pixel_values"] for example in examples])
        pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
621
622
        input_ids = torch.stack([example["input_ids"] for example in examples])
        return {"pixel_values": pixel_values, "input_ids": input_ids}
623

Suraj Patil's avatar
Suraj Patil committed
624
    # DataLoaders creation:
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
    )

Suraj Patil's avatar
Suraj Patil committed
643
    # Prepare everything with our `accelerator`.
644
645
646
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )
647
648
    if args.use_ema:
        accelerator.register_for_checkpointing(ema_unet)
649

650
651
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
652
    weight_dtype = torch.float32
653
    if accelerator.mixed_precision == "fp16":
654
        weight_dtype = torch.float16
655
    elif accelerator.mixed_precision == "bf16":
656
657
        weight_dtype = torch.bfloat16

658
    # Move text_encode and vae to gpu and cast to weight_dtype
659
660
    text_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)
661
    if args.use_ema:
662
        ema_unet.to(accelerator.device)
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("text2image-fine-tune", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
686
687
688
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
689
    # Potentially load in the weights and states from a previous save
690
691
692
693
694
695
696
697
698
699
700
701
702
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

703
704
        first_epoch = global_step // num_update_steps_per_epoch
        resume_step = global_step % num_update_steps_per_epoch
705
706

    # Only show the progress bar once on each machine.
707
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
708
709
    progress_bar.set_description("Steps")

710
    for epoch in range(first_epoch, args.num_train_epochs):
711
712
713
        unet.train()
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
714
715
716
717
718
719
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
            with accelerator.accumulate(unet):
                # Convert images to latent space
                latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample()
                latents = latents * 0.18215

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
                encoder_hidden_states = text_encoder(batch["input_ids"])[0]

739
740
741
742
743
744
745
746
                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

747
                # Predict the noise residual and compute loss
748
749
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if args.use_ema:
766
                    ema_unet.step(unet.parameters())
767
768
769
770
771
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

772
773
774
775
776
777
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

778
779
780
781
782
783
784
785
786
            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
787
788
789
790
        unet = accelerator.unwrap_model(unet)
        if args.use_ema:
            ema_unet.copy_to(unet.parameters())

791
792
        pipeline = StableDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
793
794
            text_encoder=text_encoder,
            vae=vae,
795
            unet=unet,
796
            revision=args.revision,
797
798
799
800
801
802
803
804
805
806
807
        )
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
            repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)

    accelerator.end_training()


if __name__ == "__main__":
    main()