test_kandinsky.py 8.13 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch

from diffusers import DDIMScheduler, KandinskyV22Pipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel
Dhruv Nair's avatar
Dhruv Nair committed
24
25
26
27
28
29
30
31
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_numpy,
    require_torch_gpu,
    slow,
    torch_device,
)
YiYi Xu's avatar
YiYi Xu committed
32
33
34
35
36
37
38

from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference


enable_full_determinism()


39
class Dummies:
YiYi Xu's avatar
YiYi Xu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
58
        return 32
YiYi Xu's avatar
YiYi Xu committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    @property
    def dummy_unet(self):
        torch.manual_seed(0)

        model_kwargs = {
            "in_channels": 4,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 8,
            "addition_embed_type": "image",
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "encoder_hid_dim": self.text_embedder_hidden_size,
            "encoder_hid_dim_type": "image_proj",
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": None,
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_movq_kwargs(self):
        return {
            "block_out_channels": [32, 64],
            "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
            "in_channels": 3,
            "latent_channels": 4,
            "layers_per_block": 1,
            "norm_num_groups": 8,
            "norm_type": "spatial",
            "num_vq_embeddings": 12,
            "out_channels": 3,
            "up_block_types": [
                "AttnUpDecoderBlock2D",
                "UpDecoderBlock2D",
            ],
            "vq_embed_dim": 4,
        }

    @property
    def dummy_movq(self):
        torch.manual_seed(0)
        model = VQModel(**self.dummy_movq_kwargs)
        return model

    def get_dummy_components(self):
        unet = self.dummy_unet
        movq = self.dummy_movq

        scheduler = DDIMScheduler(
            num_train_timesteps=1000,
            beta_schedule="linear",
            beta_start=0.00085,
            beta_end=0.012,
            clip_sample=False,
            set_alpha_to_one=False,
            steps_offset=1,
            prediction_type="epsilon",
            thresholding=False,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "movq": movq,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
        negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
            device
        )
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image_embeds": image_embeds,
            "negative_image_embeds": negative_image_embeds,
            "generator": generator,
            "height": 64,
            "width": 64,
            "guidance_scale": 4.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

class KandinskyV22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22Pipeline
    params = [
        "image_embeds",
        "negative_image_embeds",
    ]
    batch_params = ["image_embeds", "negative_image_embeds"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    def get_dummy_inputs(self, device, seed=0):
        dummies = Dummies()
        return dummies.get_dummy_inputs(device=device, seed=seed)

    def get_dummy_components(self):
        dummies = Dummies()
        return dummies.get_dummy_components()

YiYi Xu's avatar
YiYi Xu committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

208
        expected_slice = np.array([0.3420, 0.9505, 0.3919, 1.0000, 0.5188, 0.3109, 0.6139, 0.5624, 0.6811])
YiYi Xu's avatar
YiYi Xu committed
209
210
211
212
213
214
215
216
217

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"

        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

218
219
220
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1e-1)

YiYi Xu's avatar
YiYi Xu committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

@slow
@require_torch_gpu
class KandinskyV22PipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_kandinsky_text2img(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy"
        )

        pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
        )
        pipe_prior.to(torch_device)

        pipeline = KandinskyV22Pipeline.from_pretrained(
            "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
        )
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

        prompt = "red cat, 4k photo"

        generator = torch.Generator(device="cuda").manual_seed(0)
        image_emb, zero_image_emb = pipe_prior(
            prompt,
            generator=generator,
            num_inference_steps=5,
            negative_prompt="",
        ).to_tuple()

        generator = torch.Generator(device="cuda").manual_seed(0)
        output = pipeline(
            image_embeds=image_emb,
            negative_image_embeds=zero_image_emb,
            generator=generator,
            num_inference_steps=100,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        assert_mean_pixel_difference(image, expected_image)