test_kandinsky_prior.py 8.67 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
YiYi Xu's avatar
YiYi Xu committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import inspect
YiYi Xu's avatar
YiYi Xu committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import unittest

import numpy as np
import torch
from torch import nn
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import KandinskyV22PriorPipeline, PriorTransformer, UnCLIPScheduler
Dhruv Nair's avatar
Dhruv Nair committed
32
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device
YiYi Xu's avatar
YiYi Xu committed
33
34
35
36
37
38
39

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


40
class Dummies:
YiYi Xu's avatar
YiYi Xu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
        model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape))
        return model

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            image_size=224,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            num_attention_heads=4,
            num_channels=3,
            num_hidden_layers=5,
            patch_size=14,
        )

        model = CLIPVisionModelWithProjection(config)
        return model

    @property
    def dummy_image_processor(self):
        image_processor = CLIPImageProcessor(
            crop_size=224,
            do_center_crop=True,
            do_normalize=True,
            do_resize=True,
            image_mean=[0.48145466, 0.4578275, 0.40821073],
            image_std=[0.26862954, 0.26130258, 0.27577711],
            resample=3,
            size=224,
        )

        return image_processor

    def get_dummy_components(self):
        prior = self.dummy_prior
        image_encoder = self.dummy_image_encoder
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        image_processor = self.dummy_image_processor

        scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample=True,
            clip_sample_range=10.0,
        )

        components = {
            "prior": prior,
            "image_encoder": image_encoder,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "image_processor": image_processor,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "guidance_scale": 4.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

class KandinskyV22PriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22PriorPipeline
    params = ["prompt"]
    batch_params = ["prompt", "negative_prompt"]
    required_optional_params = [
        "num_images_per_prompt",
        "generator",
        "num_inference_steps",
        "latents",
        "negative_prompt",
        "guidance_scale",
        "output_type",
        "return_dict",
    ]
186
    callback_cfg_params = ["prompt_embeds", "text_encoder_hidden_states", "text_mask"]
187
188
189
190
191
192
193
194
195
196
    test_xformers_attention = False

    def get_dummy_components(self):
        dummies = Dummies()
        return dummies.get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        dummies = Dummies()
        return dummies.get_dummy_inputs(device=device, seed=seed)

YiYi Xu's avatar
YiYi Xu committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_kandinsky_prior(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.image_embeds

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -10:]
216

YiYi Xu's avatar
YiYi Xu committed
217
218
219
220
221
        image_from_tuple_slice = image_from_tuple[0, -10:]

        assert image.shape == (1, 32)

        expected_slice = np.array(
222
            [-0.5948, 0.1875, -0.1523, -1.1995, -1.4061, -0.6367, -1.4607, -0.6406, 0.8793, -0.3891]
YiYi Xu's avatar
YiYi Xu committed
223
224
225
226
227
228
229
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    @skip_mps
    def test_inference_batch_single_identical(self):
230
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)
YiYi Xu's avatar
YiYi Xu committed
231
232
233
234
235
236
237
238
239
240

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"
        test_mean_pixel_difference = False

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference,
            test_mean_pixel_difference=test_mean_pixel_difference,
        )
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

    # override default test because no output_type "latent", use "pt" instead
    def test_callback_inputs(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if not ("callback_on_step_end_tensor_inputs" in sig.parameters and "callback_on_step_end" in sig.parameters):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_test(pipe, i, t, callback_kwargs):
            missing_callback_inputs = set()
            for v in pipe._callback_tensor_inputs:
                if v not in callback_kwargs:
                    missing_callback_inputs.add(v)
            self.assertTrue(
                len(missing_callback_inputs) == 0, f"Missing callback tensor inputs: {missing_callback_inputs}"
            )
            last_i = pipe.num_timesteps - 1
            if i == last_i:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)
        inputs["callback_on_step_end"] = callback_inputs_test
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["num_inference_steps"] = 2
        inputs["output_type"] = "pt"

        output = pipe(**inputs)[0]
        assert output.abs().sum() == 0