test_kandinsky_combined.py 13.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from diffusers import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22InpaintCombinedPipeline,
)
Dhruv Nair's avatar
Dhruv Nair committed
25
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

from ..test_pipelines_common import PipelineTesterMixin
from .test_kandinsky import Dummies
from .test_kandinsky_img2img import Dummies as Img2ImgDummies
from .test_kandinsky_inpaint import Dummies as InpaintDummies
from .test_kandinsky_prior import Dummies as PriorDummies


enable_full_determinism()


class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22CombinedPipeline
    params = [
        "prompt",
    ]
    batch_params = ["prompt", "negative_prompt"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
57
    test_xformers_attention = True
58
    callback_cfg_params = ["image_embds"]
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    def get_dummy_components(self):
        dummy = Dummies()
        prior_dummy = PriorDummies()
        components = dummy.get_dummy_components()

        components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
        return components

    def get_dummy_inputs(self, device, seed=0):
        prior_dummy = PriorDummies()
        inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
        inputs.update(
            {
                "height": 64,
                "width": 64,
            }
        )
        return inputs

    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

102
        expected_slice = np.array([0.3076, 0.2729, 0.5668, 0.0522, 0.3384, 0.7028, 0.4908, 0.3659, 0.6243])
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)

141
    def test_float16_inference(self):
142
        super().test_float16_inference(expected_max_diff=5e-1)
143

144
145
146
147
148
149
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)

150
151
152
153
154
155
    def test_save_load_local(self):
        super().test_save_load_local(expected_max_difference=5e-3)

    def test_save_load_optional_components(self):
        super().test_save_load_optional_components(expected_max_difference=5e-3)

156
157
158
159
160
161
    def test_callback_inputs(self):
        pass

    def test_callback_cfg(self):
        pass

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22Img2ImgCombinedPipeline
    params = ["prompt", "image"]
    batch_params = ["prompt", "negative_prompt", "image"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False
182
    callback_cfg_params = ["image_embds"]
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

    def get_dummy_components(self):
        dummy = Img2ImgDummies()
        prior_dummy = PriorDummies()
        components = dummy.get_dummy_components()

        components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
        return components

    def get_dummy_inputs(self, device, seed=0):
        prior_dummy = PriorDummies()
        dummy = Img2ImgDummies()
        inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
        inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
        inputs.pop("image_embeds")
        inputs.pop("negative_image_embeds")
        return inputs

    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

224
        expected_slice = np.array([0.4445, 0.4287, 0.4596, 0.3919, 0.3730, 0.5039, 0.4834, 0.4269, 0.5521])
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)

263
    def test_float16_inference(self):
264
        super().test_float16_inference(expected_max_diff=2e-1)
265

266
267
268
269
270
271
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)

272
273
274
275
276
277
    def test_save_load_optional_components(self):
        super().test_save_load_optional_components(expected_max_difference=5e-4)

    def save_load_local(self):
        super().test_save_load_local(expected_max_difference=5e-3)

278
279
280
281
282
283
    def test_callback_inputs(self):
        pass

    def test_callback_cfg(self):
        pass

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22InpaintCombinedPipeline
    params = ["prompt", "image", "mask_image"]
    batch_params = ["prompt", "negative_prompt", "image", "mask_image"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    def get_dummy_components(self):
        dummy = InpaintDummies()
        prior_dummy = PriorDummies()
        components = dummy.get_dummy_components()

        components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
        return components

    def get_dummy_inputs(self, device, seed=0):
        prior_dummy = PriorDummies()
        dummy = InpaintDummies()
        inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
        inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
        inputs.pop("image_embeds")
        inputs.pop("negative_image_embeds")
        return inputs

    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.5039, 0.4926, 0.4898, 0.4978, 0.4838, 0.4942, 0.4738, 0.4702, 0.4816])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)
383

384
385
386
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=5e-1)

387
388
389
390
391
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)
392
393
394
395
396
397
398
399
400

    def test_save_load_local(self):
        super().test_save_load_local(expected_max_difference=5e-3)

    def test_save_load_optional_components(self):
        super().test_save_load_optional_components(expected_max_difference=5e-4)

    def test_sequential_cpu_offload_forward_pass(self):
        super().test_sequential_cpu_offload_forward_pass(expected_max_diff=5e-4)
401
402
403
404
405
406

    def test_callback_inputs(self):
        pass

    def test_callback_cfg(self):
        pass