convert_diffusers_to_original_stable_diffusion.py 12.8 KB
Newer Older
1
2
3
4
5
6
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
# *Only* converts the UNet, VAE, and Text Encoder.
# Does not convert optimizer state or any other thing.

import argparse
import os.path as osp
7
import re
8
9
10

import torch

11
from safetensors.torch import load_file, save_file
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

# =================#
# UNet Conversion #
# =================#

unet_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
]

unet_conversion_map_resnet = [
    # (stable-diffusion, HF Diffusers)
    ("in_layers.0", "norm1"),
    ("in_layers.2", "conv1"),
    ("out_layers.0", "norm2"),
    ("out_layers.3", "conv2"),
    ("emb_layers.1", "time_emb_proj"),
    ("skip_connection", "conv_shortcut"),
]

unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
    # loop over downblocks/upblocks

    for j in range(2):
        # loop over resnets/attentions for downblocks
        hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
        sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
        unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))

        if i < 3:
            # no attention layers in down_blocks.3
            hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
            sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
            unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))

    for j in range(3):
        # loop over resnets/attentions for upblocks
        hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
        sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
        unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))

        if i > 0:
            # no attention layers in up_blocks.0
            hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
            sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
            unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))

    if i < 3:
        # no downsample in down_blocks.3
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
        sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
        unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))

        # no upsample in up_blocks.3
        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
        unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))

hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))

for j in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{j}."
    sd_mid_res_prefix = f"middle_block.{2*j}."
    unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))


def convert_unet_state_dict(unet_state_dict):
    # buyer beware: this is a *brittle* function,
    # and correct output requires that all of these pieces interact in
    # the exact order in which I have arranged them.
    mapping = {k: k for k in unet_state_dict.keys()}
    for sd_name, hf_name in unet_conversion_map:
        mapping[hf_name] = sd_name
    for k, v in mapping.items():
        if "resnets" in k:
            for sd_part, hf_part in unet_conversion_map_resnet:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    for k, v in mapping.items():
        for sd_part, hf_part in unet_conversion_map_layer:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
    return new_state_dict


# ================#
# VAE Conversion #
# ================#

vae_conversion_map = [
    # (stable-diffusion, HF Diffusers)
    ("nin_shortcut", "conv_shortcut"),
    ("norm_out", "conv_norm_out"),
    ("mid.attn_1.", "mid_block.attentions.0."),
]

for i in range(4):
    # down_blocks have two resnets
    for j in range(2):
        hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
        sd_down_prefix = f"encoder.down.{i}.block.{j}."
        vae_conversion_map.append((sd_down_prefix, hf_down_prefix))

    if i < 3:
        hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
        sd_downsample_prefix = f"down.{i}.downsample."
        vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))

        hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
        sd_upsample_prefix = f"up.{3-i}.upsample."
        vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))

    # up_blocks have three resnets
    # also, up blocks in hf are numbered in reverse from sd
    for j in range(3):
        hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
        sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
        vae_conversion_map.append((sd_up_prefix, hf_up_prefix))

# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
    hf_mid_res_prefix = f"mid_block.resnets.{i}."
    sd_mid_res_prefix = f"mid.block_{i+1}."
    vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))


vae_conversion_map_attn = [
    # (stable-diffusion, HF Diffusers)
    ("norm.", "group_norm."),
    ("q.", "query."),
    ("k.", "key."),
    ("v.", "value."),
    ("proj_out.", "proj_attn."),
]


def reshape_weight_for_sd(w):
    # convert HF linear weights to SD conv2d weights
    return w.reshape(*w.shape, 1, 1)


def convert_vae_state_dict(vae_state_dict):
    mapping = {k: k for k in vae_state_dict.keys()}
    for k, v in mapping.items():
        for sd_part, hf_part in vae_conversion_map:
            v = v.replace(hf_part, sd_part)
        mapping[k] = v
    for k, v in mapping.items():
        if "attentions" in k:
            for sd_part, hf_part in vae_conversion_map_attn:
                v = v.replace(hf_part, sd_part)
            mapping[k] = v
    new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
    weights_to_convert = ["q", "k", "v", "proj_out"]
    for k, v in new_state_dict.items():
        for weight_name in weights_to_convert:
            if f"mid.attn_1.{weight_name}.weight" in k:
                print(f"Reshaping {k} for SD format")
                new_state_dict[k] = reshape_weight_for_sd(v)
    return new_state_dict


# =========================#
# Text Encoder Conversion #
# =========================#


195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
textenc_conversion_lst = [
    # (stable-diffusion, HF Diffusers)
    ("resblocks.", "text_model.encoder.layers."),
    ("ln_1", "layer_norm1"),
    ("ln_2", "layer_norm2"),
    (".c_fc.", ".fc1."),
    (".c_proj.", ".fc2."),
    (".attn", ".self_attn"),
    ("ln_final.", "transformer.text_model.final_layer_norm."),
    ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
    ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
textenc_pattern = re.compile("|".join(protected.keys()))

# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
code2idx = {"q": 0, "k": 1, "v": 2}


214
def convert_text_enc_state_dict_v20(text_enc_dict):
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    new_state_dict = {}
    capture_qkv_weight = {}
    capture_qkv_bias = {}
    for k, v in text_enc_dict.items():
        if (
            k.endswith(".self_attn.q_proj.weight")
            or k.endswith(".self_attn.k_proj.weight")
            or k.endswith(".self_attn.v_proj.weight")
        ):
            k_pre = k[: -len(".q_proj.weight")]
            k_code = k[-len("q_proj.weight")]
            if k_pre not in capture_qkv_weight:
                capture_qkv_weight[k_pre] = [None, None, None]
            capture_qkv_weight[k_pre][code2idx[k_code]] = v
            continue

        if (
            k.endswith(".self_attn.q_proj.bias")
            or k.endswith(".self_attn.k_proj.bias")
            or k.endswith(".self_attn.v_proj.bias")
        ):
            k_pre = k[: -len(".q_proj.bias")]
            k_code = k[-len("q_proj.bias")]
            if k_pre not in capture_qkv_bias:
                capture_qkv_bias[k_pre] = [None, None, None]
            capture_qkv_bias[k_pre][code2idx[k_code]] = v
            continue

        relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
        new_state_dict[relabelled_key] = v

    for k_pre, tensors in capture_qkv_weight.items():
        if None in tensors:
            raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
        relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
        new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)

    for k_pre, tensors in capture_qkv_bias.items():
        if None in tensors:
            raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
        relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
        new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)

    return new_state_dict


261
def convert_text_enc_state_dict(text_enc_dict):
262
263
264
265
266
267
268
269
270
    return text_enc_dict


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
    parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
    parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
271
272
273
    parser.add_argument(
        "--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
    )
274
275
276
277
278
279
280

    args = parser.parse_args()

    assert args.model_path is not None, "Must provide a model path!"

    assert args.checkpoint_path is not None, "Must provide a checkpoint path!"

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    # Path for safetensors
    unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
    vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
    text_enc_path = osp.join(args.model_path, "text_encoder", "model.safetensors")

    # Load models from safetensors if it exists, if it doesn't pytorch
    if osp.exists(unet_path):
        unet_state_dict = load_file(unet_path, device="cpu")
    else:
        unet_path = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
        unet_state_dict = torch.load(unet_path, map_location="cpu")

    if osp.exists(vae_path):
        vae_state_dict = load_file(vae_path, device="cpu")
    else:
        vae_path = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
        vae_state_dict = torch.load(vae_path, map_location="cpu")

    if osp.exists(text_enc_path):
        text_enc_dict = load_file(text_enc_path, device="cpu")
    else:
        text_enc_path = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
        text_enc_dict = torch.load(text_enc_path, map_location="cpu")
304
305
306
307
308
309
310
311
312

    # Convert the UNet model
    unet_state_dict = convert_unet_state_dict(unet_state_dict)
    unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}

    # Convert the VAE model
    vae_state_dict = convert_vae_state_dict(vae_state_dict)
    vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}

313
314
315
316
317
318
319
320
321
322
323
    # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
    is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict

    if is_v20_model:
        # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
        text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
        text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
        text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
    else:
        text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
        text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
324
325
326
327
328

    # Put together new checkpoint
    state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
    if args.half:
        state_dict = {k: v.half() for k, v in state_dict.items()}
329
330
331
332
333
334

    if args.use_safetensors:
        save_file(state_dict, args.checkpoint_path)
    else:
        state_dict = {"state_dict": state_dict}
        torch.save(state_dict, args.checkpoint_path)