test_stable_unclip_img2img.py 10.6 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
import gc
import random
import unittest

5
import numpy as np
Will Berman's avatar
Will Berman committed
6
7
import torch
from transformers import (
8
    CLIPImageProcessor,
Will Berman's avatar
Will Berman committed
9
10
11
12
13
14
15
16
17
18
19
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
Pedro Cuenca's avatar
Pedro Cuenca committed
20
from diffusers.utils.testing_utils import (
21
    enable_full_determinism,
Pedro Cuenca's avatar
Pedro Cuenca committed
22
23
24
    floats_tensor,
    load_image,
    load_numpy,
25
    nightly,
Pedro Cuenca's avatar
Pedro Cuenca committed
26
27
28
29
    require_torch_gpu,
    skip_mps,
    torch_device,
)
Will Berman's avatar
Will Berman committed
30

31
32
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
33
    PipelineKarrasSchedulerTesterMixin,
34
    PipelineLatentTesterMixin,
35
36
37
    PipelineTesterMixin,
    assert_mean_pixel_difference,
)
Will Berman's avatar
Will Berman committed
38
39


40
enable_full_determinism()
41
42


43
44
45
class StableUnCLIPImg2ImgPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
Will Berman's avatar
Will Berman committed
46
    pipeline_class = StableUnCLIPImg2ImgPipeline
47
48
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
49
50
51
    image_params = frozenset(
        []
    )  # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
52
    image_latents_params = frozenset([])
Will Berman's avatar
Will Berman committed
53
54
55
56
57
58
59

    def get_dummy_components(self):
        embedder_hidden_size = 32
        embedder_projection_dim = embedder_hidden_size

        # image encoding components

60
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
Will Berman's avatar
Will Berman committed
61

62
        torch.manual_seed(0)
Will Berman's avatar
Will Berman committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        image_encoder = CLIPVisionModelWithProjection(
            CLIPVisionConfig(
                hidden_size=embedder_hidden_size,
                projection_dim=embedder_projection_dim,
                num_hidden_layers=5,
                num_attention_heads=4,
                image_size=32,
                intermediate_size=37,
                patch_size=1,
            )
        )

        # regular denoising components

        torch.manual_seed(0)
        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
        image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")

        torch.manual_seed(0)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=32,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
            block_out_channels=(32, 64),
            attention_head_dim=(2, 4),
            class_embed_type="projection",
            # The class embeddings are the noise augmented image embeddings.
            # I.e. the image embeddings concated with the noised embeddings of the same dimension
            projection_class_embeddings_input_dim=embedder_projection_dim * 2,
            cross_attention_dim=embedder_hidden_size,
            layers_per_block=1,
            upcast_attention=True,
            use_linear_projection=True,
        )

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_schedule="scaled_linear",
            beta_start=0.00085,
            beta_end=0.012,
            prediction_type="v_prediction",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL()

        components = {
            # image encoding components
            "feature_extractor": feature_extractor,
135
            "image_encoder": image_encoder.eval(),
Will Berman's avatar
Will Berman committed
136
            # image noising components
137
            "image_normalizer": image_normalizer.eval(),
Will Berman's avatar
Will Berman committed
138
139
140
            "image_noising_scheduler": image_noising_scheduler,
            # regular denoising components
            "tokenizer": tokenizer,
141
142
            "text_encoder": text_encoder.eval(),
            "unet": unet.eval(),
Will Berman's avatar
Will Berman committed
143
            "scheduler": scheduler,
144
            "vae": vae.eval(),
Will Berman's avatar
Will Berman committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
        }

        return components

    def get_dummy_inputs(self, device, seed=0, pil_image=True):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "prompt": "An anime racoon running a marathon",
            "image": input_image,
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
        }

Pedro Cuenca's avatar
Pedro Cuenca committed
171
    @skip_mps
172
173
174
175
176
177
178
179
180
181
182
183
184
    def test_image_embeds_none(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableUnCLIPImg2ImgPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"image_embeds": None})
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
185
        expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078])
186
187
188

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

Will Berman's avatar
Will Berman committed
189
190
191
192
193
194
195
196
197
198
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because GPU undeterminism requires a looser check.
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device in ["cpu", "mps"]

        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because undeterminism requires a looser check.
    def test_inference_batch_single_identical(self):
199
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)
Will Berman's avatar
Will Berman committed
200
201
202
203
204
205
206
207
208

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False)


209
@nightly
Will Berman's avatar
Will Berman committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
@require_torch_gpu
class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_unclip_l_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
232
233
234
235
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
236
237

        generator = torch.Generator(device="cpu").manual_seed(0)
238
        output = pipe(input_image, "anime turle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_h_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
260
261
262
263
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
264
265

        generator = torch.Generator(device="cpu").manual_seed(0)
266
        output = pipe(input_image, "anime turle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
292
            input_image,
Will Berman's avatar
Will Berman committed
293
294
295
296
297
298
299
300
            "anime turtle",
            num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9