train_dreambooth_lora_sdxl.py 69.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
import gc
18
import itertools
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import logging
import math
import os
import shutil
import warnings
from pathlib import Path

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
34
from huggingface_hub import create_repo, upload_folder
35
from huggingface_hub.utils import insecure_hashlib
36
from packaging import version
37
38
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
39
40
41
42
43
44
45
46
47
48
49
50
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DPMSolverMultistepScheduler,
51
    StableDiffusionXLPipeline,
52
53
    UNet2DConditionModel,
)
54
from diffusers.loaders import LoraLoaderMixin
55
from diffusers.optimization import get_scheduler
56
from diffusers.training_utils import compute_snr
57
58
59
60
61
from diffusers.utils import check_min_version, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
62
check_min_version("0.25.0.dev0")
63
64
65
66

logger = get_logger(__name__)


67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# TODO: This function should be removed once training scripts are rewritten in PEFT
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    def text_encoder_attn_modules(text_encoder):
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))

        return attn_modules

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


100
def save_model_card(
101
102
103
104
105
106
107
108
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    instance_prompt=str,
    validation_prompt=str,
    repo_folder=None,
    vae_path=None,
109
):
110
    img_str = "widget:\n" if images else ""
111
112
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
113
114
115
        img_str += f"""
        - text: '{validation_prompt if validation_prompt else ' ' }'
          output:
116
            url:
117
118
                "image_{i}.png"
        """
119
120
121
122
123
124
125
126
127

    yaml = f"""
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
128
129
130
131
132
- template:sd-lora
{img_str}
base_model: {base_model}
instance_prompt: {instance_prompt}
license: openrail++
133
134
---
    """
135

136
    model_card = f"""
137
# SDXL LoRA DreamBooth - {repo_id}
138

139
<Gallery />
140

141
## Model description
142

143
These are {repo_id} LoRA adaption weights for {base_model}.
144

145
The weights were trained  using [DreamBooth](https://dreambooth.github.io/).
146

147
LoRA for the text encoder was enabled: {train_text_encoder}.
148

149
Special VAE used for training: {vae_path}.
150
151
152
153
154
155
156
157
158
159
160

## Trigger words

You should use {instance_prompt} to trigger the image generation.

## Download model

Weights for this model are available in Safetensors format.

[Download]({repo_id}/tree/main) them in the Files & versions tab.

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


def import_model_class_from_model_name_or_path(
    pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
195
196
197
198
199
200
    parser.add_argument(
        "--pretrained_vae_model_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
    )
201
202
203
204
205
206
207
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
208
209
210
211
212
213
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
230
231
232
233
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
234
235
236
237
238
239
240
241
        help=("A folder containing the training data. "),
    )

    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
242
    )
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    parser.add_argument(
        "--image_column",
        type=str,
        default="image",
        help="The column of the dataset containing the target image. By "
        "default, the standard Image Dataset maps out 'file_name' "
        "to 'image'.",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default=None,
        help="The column of the dataset containing the instance prompt for each image",
    )

    parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")

261
262
263
264
265
266
267
268
269
270
271
272
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
273
        help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
328
        default=1024,
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--crops_coords_top_left_h",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )
    parser.add_argument(
        "--crops_coords_top_left_w",
        type=int,
        default=0,
        help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
412
        default=1e-4,
413
414
        help="Initial learning rate (after the potential warmup period) to use.",
    )
415
416
417
418
419
420
421

    parser.add_argument(
        "--text_encoder_lr",
        type=float,
        default=5e-6,
        help="Text encoder learning rate to use.",
    )
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
437
438
439
440
441
442
443
444

    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    parser.add_argument(
        "--optimizer",
        type=str,
        default="AdamW",
        help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
    )

    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )

    parser.add_argument(
        "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
        "uses the value of square root of beta2. Ignored if optimizer is adamW",
    )
    parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
492
    parser.add_argument(
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
    )

    parser.add_argument(
        "--adam_epsilon",
        type=float,
        default=1e-08,
        help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
    )

    parser.add_argument(
        "--prodigy_use_bias_correction",
        type=bool,
        default=True,
        help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
    )
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        type=bool,
        default=True,
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
        "Ignored if optimizer is adamW",
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    )
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
576
577
578
579
580
581
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
582
583
584
585
586
587

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

588
589
590
591
592
593
    if args.dataset_name is None and args.instance_data_dir is None:
        raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`")

    if args.dataset_name is not None and args.instance_data_dir is not None:
        raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`")

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
616
    It pre-processes the images.
617
618
619
620
621
    """

    def __init__(
        self,
        instance_data_root,
622
623
        instance_prompt,
        class_prompt,
624
625
626
        class_data_root=None,
        class_num=None,
        size=1024,
627
        repeats=1,
628
629
630
631
632
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        self.instance_prompt = instance_prompt
        self.custom_instance_prompts = None
        self.class_prompt = class_prompt

        # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory,
        # we load the training data using load_dataset
        if args.dataset_name is not None:
            try:
                from datasets import load_dataset
            except ImportError:
                raise ImportError(
                    "You are trying to load your data using the datasets library. If you wish to train using custom "
                    "captions please install the datasets library: `pip install datasets`. If you wish to load a "
                    "local folder containing images only, specify --instance_data_dir instead."
                )
            # Downloading and loading a dataset from the hub.
            # See more about loading custom images at
            # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
            dataset = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                cache_dir=args.cache_dir,
            )
            # Preprocessing the datasets.
            column_names = dataset["train"].column_names

            # 6. Get the column names for input/target.
            if args.image_column is None:
                image_column = column_names[0]
                logger.info(f"image column defaulting to {image_column}")
            else:
                image_column = args.image_column
                if image_column not in column_names:
                    raise ValueError(
                        f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
            instance_images = dataset["train"][image_column]

            if args.caption_column is None:
                logger.info(
                    "No caption column provided, defaulting to instance_prompt for all images. If your dataset "
                    "contains captions/prompts for the images, make sure to specify the "
                    "column as --caption_column"
                )
                self.custom_instance_prompts = None
            else:
                if args.caption_column not in column_names:
                    raise ValueError(
                        f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
                    )
                custom_instance_prompts = dataset["train"][args.caption_column]
                # create final list of captions according to --repeats
                self.custom_instance_prompts = []
                for caption in custom_instance_prompts:
                    self.custom_instance_prompts.extend(itertools.repeat(caption, repeats))
        else:
            self.instance_data_root = Path(instance_data_root)
            if not self.instance_data_root.exists():
                raise ValueError("Instance images root doesn't exists.")
692

693
694
695
696
697
698
699
            instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())]
            self.custom_instance_prompts = None

        self.instance_images = []
        for img in instance_images:
            self.instance_images.extend(itertools.repeat(img, repeats))
        self.num_instance_images = len(self.instance_images)
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
728
        instance_image = self.instance_images[index % self.num_instance_images]
729
730
731
732
733
734
        instance_image = exif_transpose(instance_image)

        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)

735
736
737
738
739
740
741
742
743
744
        if self.custom_instance_prompts:
            caption = self.custom_instance_prompts[index % self.num_instance_images]
            if caption:
                example["instance_prompt"] = caption
            else:
                example["instance_prompt"] = self.instance_prompt

        else:  # costum prompts were provided, but length does not match size of image dataset
            example["instance_prompt"] = self.instance_prompt

745
746
747
748
749
750
751
        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            class_image = exif_transpose(class_image)

            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
752
            example["class_prompt"] = self.class_prompt
753
754
755
756
757
758

        return example


def collate_fn(examples, with_prior_preservation=False):
    pixel_values = [example["instance_images"] for example in examples]
759
    prompts = [example["instance_prompt"] for example in examples]
760
761
762
763
764

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        pixel_values += [example["class_images"] for example in examples]
765
        prompts += [example["class_prompt"] for example in examples]
766
767
768
769

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

770
    batch = {"pixel_values": pixel_values, "prompts": prompts}
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


791
792
793
794
795
796
797
798
799
800
801
802
def tokenize_prompt(tokenizer, prompt):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    return text_input_ids


803
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
804
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
805
806
    prompt_embeds_list = []

807
808
809
810
811
812
813
    for i, text_encoder in enumerate(text_encoders):
        if tokenizers is not None:
            tokenizer = tokenizers[i]
            text_input_ids = tokenize_prompt(tokenizer, prompt)
        else:
            assert text_input_ids_list is not None
            text_input_ids = text_input_ids_list[i]
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

        prompt_embeds = text_encoder(
            text_input_ids.to(text_encoder.device),
            output_hidden_states=True,
        )

        # We are only ALWAYS interested in the pooled output of the final text encoder
        pooled_prompt_embeds = prompt_embeds[0]
        prompt_embeds = prompt_embeds.hidden_states[-2]
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
        prompt_embeds_list.append(prompt_embeds)

    prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
    return prompt_embeds, pooled_prompt_embeds


def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
836
    kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
837
838
839
840
841
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
842
        kwargs_handlers=[kwargs],
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
883
            pipeline = StableDiffusionXLPipeline.from_pretrained(
884
885
886
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                revision=args.revision,
887
                variant=args.variant,
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
906
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load the tokenizers
    tokenizer_one = AutoTokenizer.from_pretrained(
926
927
928
929
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
        use_fast=False,
930
931
    )
    tokenizer_two = AutoTokenizer.from_pretrained(
932
933
934
935
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
        use_fast=False,
936
937
938
939
940
941
942
943
944
945
946
947
948
    )

    # import correct text encoder classes
    text_encoder_cls_one = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision
    )
    text_encoder_cls_two = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder_one = text_encoder_cls_one.from_pretrained(
949
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
950
951
    )
    text_encoder_two = text_encoder_cls_two.from_pretrained(
952
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
953
    )
954
955
956
957
958
959
    vae_path = (
        args.pretrained_model_name_or_path
        if args.pretrained_vae_model_name_or_path is None
        else args.pretrained_vae_model_name_or_path
    )
    vae = AutoencoderKL.from_pretrained(
960
961
962
963
        vae_path,
        subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
        revision=args.revision,
        variant=args.variant,
964
    )
965
    unet = UNet2DConditionModel.from_pretrained(
966
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
967
968
969
970
971
972
973
974
    )

    # We only train the additional adapter LoRA layers
    vae.requires_grad_(False)
    text_encoder_one.requires_grad_(False)
    text_encoder_two.requires_grad_(False)
    unet.requires_grad_(False)

975
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
976
977
978
979
980
981
982
983
984
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
985
986
987
988

    # The VAE is always in float32 to avoid NaN losses.
    vae.to(accelerator.device, dtype=torch.float32)

989
990
991
992
993
994
995
996
997
998
    text_encoder_one.to(accelerator.device, dtype=weight_dtype)
    text_encoder_two.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
999
1000
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, "
                    "please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
1001
1002
1003
1004
1005
                )
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

1006
1007
1008
1009
1010
1011
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder_one.gradient_checkpointing_enable()
            text_encoder_two.gradient_checkpointing_enable()

1012
    # now we will add new LoRA weights to the attention layers
1013
1014
1015
1016
    unet_lora_config = LoraConfig(
        r=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"]
    )
    unet.add_adapter(unet_lora_config)
1017
1018
1019
1020

    # The text encoder comes from 🤗 transformers, so we cannot directly modify it.
    # So, instead, we monkey-patch the forward calls of its attention-blocks.
    if args.train_text_encoder:
1021
1022
        text_lora_config = LoraConfig(
            r=args.rank, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"]
1023
        )
1024
1025
        text_encoder_one.add_adapter(text_lora_config)
        text_encoder_two.add_adapter(text_lora_config)
1026
1027
1028

    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
1029
1030
1031
1032
1033
1034
1035
1036
1037
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_one_lora_layers_to_save = None
            text_encoder_two_lora_layers_to_save = None

            for model in models:
                if isinstance(model, type(accelerator.unwrap_model(unet))):
1038
                    unet_lora_layers_to_save = get_peft_model_state_dict(model)
1039
                elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
1040
                    text_encoder_one_lora_layers_to_save = get_peft_model_state_dict(model)
1041
                elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
1042
                    text_encoder_two_lora_layers_to_save = get_peft_model_state_dict(model)
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            StableDiffusionXLPipeline.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
                text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
            )
1055
1056
1057

    def load_model_hook(models, input_dir):
        unet_ = None
1058
1059
        text_encoder_one_ = None
        text_encoder_two_ = None
1060
1061
1062
1063
1064
1065

        while len(models) > 0:
            model = models.pop()

            if isinstance(model, type(accelerator.unwrap_model(unet))):
                unet_ = model
1066
1067
1068
1069
            elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
                text_encoder_one_ = model
            elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
                text_encoder_two_ = model
1070
1071
1072
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

1073
1074
        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
        LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
1075
1076

        text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k}
1077
        LoraLoaderMixin.load_lora_into_text_encoder(
1078
            text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_
1079
        )
1080
1081

        text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k}
1082
        LoraLoaderMixin.load_lora_into_text_encoder(
1083
            text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        )

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

1099
1100
1101
1102
1103
1104
    unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))

    if args.train_text_encoder:
        text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
        text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    # Optimization parameters
    unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate}
    if args.train_text_encoder:
        # different learning rate for text encoder and unet
        text_lora_parameters_one_with_lr = {
            "params": text_lora_parameters_one,
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        text_lora_parameters_two_with_lr = {
            "params": text_lora_parameters_two,
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        params_to_optimize = [
            unet_lora_parameters_with_lr,
            text_lora_parameters_one_with_lr,
            text_lora_parameters_two_with_lr,
        ]
    else:
        params_to_optimize = [unet_lora_parameters_with_lr]

    # Optimizer creation
    if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
        logger.warn(
            f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
            "Defaulting to adamW"
        )
        args.optimizer = "adamw"

    if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
        logger.warn(
            f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.optimizer.lower() == "adamw":
        if args.use_8bit_adam:
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError(
                    "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
                )

            optimizer_class = bnb.optim.AdamW8bit
        else:
            optimizer_class = torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )

    if args.optimizer.lower() == "prodigy":
1162
        try:
1163
            import prodigyopt
1164
        except ImportError:
1165
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
1166

1167
        optimizer_class = prodigyopt.Prodigy
1168

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )

    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_prompt=args.class_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_num=args.num_class_images,
        size=args.resolution,
        repeats=args.repeats,
        center_crop=args.center_crop,
1190
    )
1191
1192
1193
1194
1195
1196
1197

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=args.dataloader_num_workers,
1198
1199
    )

1200
    # Computes additional embeddings/ids required by the SDXL UNet.
1201
    # regular text embeddings (when `train_text_encoder` is not True)
1202
1203
    # pooled text embeddings
    # time ids
1204

1205
1206
    def compute_time_ids():
        # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
1207
1208
1209
        original_size = (args.resolution, args.resolution)
        target_size = (args.resolution, args.resolution)
        crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids])
        add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
        return add_time_ids

    if not args.train_text_encoder:
        tokenizers = [tokenizer_one, tokenizer_two]
        text_encoders = [text_encoder_one, text_encoder_two]

        def compute_text_embeddings(prompt, text_encoders, tokenizers):
            with torch.no_grad():
                prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
                prompt_embeds = prompt_embeds.to(accelerator.device)
                pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
            return prompt_embeds, pooled_prompt_embeds

    # Handle instance prompt.
    instance_time_ids = compute_time_ids()
1228
1229
1230
1231
1232

    # If no type of tuning is done on the text_encoder and custom instance prompts are NOT
    # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid
    # the redundant encoding.
    if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
1233
1234
1235
        instance_prompt_hidden_states, instance_pooled_prompt_embeds = compute_text_embeddings(
            args.instance_prompt, text_encoders, tokenizers
        )
1236

1237
    # Handle class prompt for prior-preservation.
1238
    if args.with_prior_preservation:
1239
1240
1241
1242
1243
        class_time_ids = compute_time_ids()
        if not args.train_text_encoder:
            class_prompt_hidden_states, class_pooled_prompt_embeds = compute_text_embeddings(
                args.class_prompt, text_encoders, tokenizers
            )
1244

1245
1246
    # Clear the memory here
    if not args.train_text_encoder and not train_dataset.custom_instance_prompts:
1247
1248
1249
        del tokenizers, text_encoders
        gc.collect()
        torch.cuda.empty_cache()
1250

1251
1252
    # If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images),
    # pack the statically computed variables appropriately here. This is so that we don't
1253
1254
1255
1256
1257
    # have to pass them to the dataloader.
    add_time_ids = instance_time_ids
    if args.with_prior_preservation:
        add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0)

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
    if not train_dataset.custom_instance_prompts:
        if not args.train_text_encoder:
            prompt_embeds = instance_prompt_hidden_states
            unet_add_text_embeds = instance_pooled_prompt_embeds
            if args.with_prior_preservation:
                prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0)
                unet_add_text_embeds = torch.cat([unet_add_text_embeds, class_pooled_prompt_embeds], dim=0)
        # if we're optmizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the
        # batch prompts on all training steps
        else:
            tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt)
            tokens_two = tokenize_prompt(tokenizer_two, args.instance_prompt)
            if args.with_prior_preservation:
                class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt)
                class_tokens_two = tokenize_prompt(tokenizer_two, args.class_prompt)
                tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0)
                tokens_two = torch.cat([tokens_two, class_tokens_two], dim=0)
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1286
1287
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1288
1289
1290
1291
1292
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1293
1294
1295
1296
1297
1298
1299
1300
    if args.train_text_encoder:
        unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth-lora-sd-xl", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1344
            initial_global_step = 0
1345
1346
1347
1348
1349
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1350
            initial_global_step = global_step
1351
1352
            first_epoch = global_step // num_update_steps_per_epoch

1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1363
1364
1365

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1366
1367
1368
        if args.train_text_encoder:
            text_encoder_one.train()
            text_encoder_two.train()
Patrick von Platen's avatar
Patrick von Platen committed
1369

1370
1371
1372
            # set top parameter requires_grad = True for gradient checkpointing works
            text_encoder_one.text_model.embeddings.requires_grad_(True)
            text_encoder_two.text_model.embeddings.requires_grad_(True)
Patrick von Platen's avatar
Patrick von Platen committed
1373

1374
1375
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
1376
                pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
                prompts = batch["prompts"]

                # encode batch prompts when custom prompts are provided for each image -
                if train_dataset.custom_instance_prompts:
                    if not args.train_text_encoder:
                        prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
                            prompts, text_encoders, tokenizers
                        )
                    else:
                        tokens_one = tokenize_prompt(tokenizer_one, prompts)
                        tokens_two = tokenize_prompt(tokenizer_two, prompts)
1388
1389

                # Convert images to latent space
1390
                model_input = vae.encode(pixel_values).latent_dist.sample()
1391
                model_input = model_input * vae.config.scaling_factor
1392
1393
                if args.pretrained_vae_model_name_or_path is None:
                    model_input = model_input.to(weight_dtype)
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(model_input)
                bsz = model_input.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
                timesteps = timesteps.long()

                # Add noise to the model input according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)

1408
1409
1410
1411
1412
1413
1414
                # Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
                if not train_dataset.custom_instance_prompts:
                    elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz
                    elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
                else:
                    elems_to_repeat_text_embeds = 1
                    elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
1415

1416
                # Predict the noise residual
1417
1418
                if not args.train_text_encoder:
                    unet_added_conditions = {
1419
1420
                        "time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1),
                        "text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
1421
                    }
1422
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
1423
1424
1425
                    model_pred = unet(
                        noisy_model_input,
                        timesteps,
1426
                        prompt_embeds_input,
1427
1428
1429
                        added_cond_kwargs=unet_added_conditions,
                    ).sample
                else:
1430
                    unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1)}
1431
1432
1433
1434
1435
1436
                    prompt_embeds, pooled_prompt_embeds = encode_prompt(
                        text_encoders=[text_encoder_one, text_encoder_two],
                        tokenizers=None,
                        prompt=None,
                        text_input_ids_list=[tokens_one, tokens_two],
                    )
1437
1438
1439
1440
                    unet_added_conditions.update(
                        {"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
                    )
                    prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
1441
                    model_pred = unet(
1442
                        noisy_model_input, timesteps, prompt_embeds_input, added_cond_kwargs=unet_added_conditions
1443
                    ).sample
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
                if args.snr_gamma is None:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
                    snr = compute_snr(noise_scheduler, timesteps)
                    base_weight = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )

                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
                        mse_loss_weights = base_weight + 1
                    else:
                        # Epsilon and sample both use the same loss weights.
                        mse_loss_weights = base_weight

                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()

                if args.with_prior_preservation:
1484
1485
1486
1487
1488
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1489
1490
1491
1492
1493
                    params_to_clip = (
                        itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
                        if args.train_text_encoder
                        else unet_lora_parameters
                    )
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                logger.info(
                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                    f" {args.validation_prompt}."
                )
                # create pipeline
1544
1545
                if not args.train_text_encoder:
                    text_encoder_one = text_encoder_cls_one.from_pretrained(
1546
1547
1548
1549
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder",
                        revision=args.revision,
                        variant=args.variant,
1550
1551
                    )
                    text_encoder_two = text_encoder_cls_two.from_pretrained(
1552
1553
1554
1555
                        args.pretrained_model_name_or_path,
                        subfolder="text_encoder_2",
                        revision=args.revision,
                        variant=args.variant,
1556
1557
                    )
                pipeline = StableDiffusionXLPipeline.from_pretrained(
1558
                    args.pretrained_model_name_or_path,
1559
                    vae=vae,
1560
1561
                    text_encoder=accelerator.unwrap_model(text_encoder_one),
                    text_encoder_2=accelerator.unwrap_model(text_encoder_two),
1562
1563
                    unet=accelerator.unwrap_model(unet),
                    revision=args.revision,
1564
                    variant=args.variant,
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
                    torch_dtype=weight_dtype,
                )

                # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
                scheduler_args = {}

                if "variance_type" in pipeline.scheduler.config:
                    variance_type = pipeline.scheduler.config.variance_type

                    if variance_type in ["learned", "learned_range"]:
                        variance_type = "fixed_small"

                    scheduler_args["variance_type"] = variance_type

                pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    pipeline.scheduler.config, **scheduler_args
                )

                pipeline = pipeline.to(accelerator.device)
                pipeline.set_progress_bar_config(disable=True)

                # run inference
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
                pipeline_args = {"prompt": args.validation_prompt}

1590
1591
1592
1593
1594
                with torch.cuda.amp.autocast():
                    images = [
                        pipeline(**pipeline_args, generator=generator).images[0]
                        for _ in range(args.num_validation_images)
                    ]
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

                for tracker in accelerator.trackers:
                    if tracker.name == "tensorboard":
                        np_images = np.stack([np.asarray(img) for img in images])
                        tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                    if tracker.name == "wandb":
                        tracker.log(
                            {
                                "validation": [
                                    wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                    for i, image in enumerate(images)
                                ]
                            }
                        )

                del pipeline
                torch.cuda.empty_cache()

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        unet = accelerator.unwrap_model(unet)
        unet = unet.to(torch.float32)
1618
        unet_lora_layers = get_peft_model_state_dict(unet)
1619

1620
1621
        if args.train_text_encoder:
            text_encoder_one = accelerator.unwrap_model(text_encoder_one)
1622
            text_encoder_lora_layers = get_peft_model_state_dict(text_encoder_one.to(torch.float32))
1623
            text_encoder_two = accelerator.unwrap_model(text_encoder_two)
1624
            text_encoder_2_lora_layers = get_peft_model_state_dict(text_encoder_two.to(torch.float32))
1625
1626
1627
1628
1629
        else:
            text_encoder_lora_layers = None
            text_encoder_2_lora_layers = None

        StableDiffusionXLPipeline.save_lora_weights(
1630
1631
            save_directory=args.output_dir,
            unet_lora_layers=unet_lora_layers,
1632
1633
            text_encoder_lora_layers=text_encoder_lora_layers,
            text_encoder_2_lora_layers=text_encoder_2_lora_layers,
1634
1635
1636
1637
        )

        # Final inference
        # Load previous pipeline
1638
1639
1640
1641
        vae = AutoencoderKL.from_pretrained(
            vae_path,
            subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
            revision=args.revision,
1642
            variant=args.variant,
1643
1644
1645
            torch_dtype=weight_dtype,
        )
        pipeline = StableDiffusionXLPipeline.from_pretrained(
1646
1647
1648
1649
1650
            args.pretrained_model_name_or_path,
            vae=vae,
            revision=args.revision,
            variant=args.variant,
            torch_dtype=weight_dtype,
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
        )

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)

        # load attention processors
        pipeline.load_lora_weights(args.output_dir)

        # run inference
        images = []
        if args.validation_prompt and args.num_validation_images > 0:
1672
            pipeline = pipeline.to(accelerator.device)
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]

            for tracker in accelerator.trackers:
                if tracker.name == "tensorboard":
                    np_images = np.stack([np.asarray(img) for img in images])
                    tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "test": [
                                wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                for i, image in enumerate(images)
                            ]
                        }
                    )

        if args.push_to_hub:
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
1699
1700
                instance_prompt=args.instance_prompt,
                validation_prompt=args.validation_prompt,
1701
                repo_folder=args.output_dir,
1702
                vae_path=args.pretrained_vae_model_name_or_path,
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
            )
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)