test_models_unet_2d_condition.py 54.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
import gc
18
import os
19
20
import tempfile
import unittest
21
from collections import OrderedDict
22
23

import torch
24
from parameterized import parameterized
25
from pytest import mark
26
27

from diffusers import UNet2DConditionModel
28
29
30
31
32
from diffusers.models.attention_processor import (
    CustomDiffusionAttnProcessor,
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
)
33
from diffusers.models.embeddings import ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterPlusImageProjection
Dhruv Nair's avatar
Dhruv Nair committed
34
35
36
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
Arsalan's avatar
Arsalan committed
37
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
38
    enable_full_determinism,
39
    floats_tensor,
40
    is_peft_available,
41
    load_hf_numpy,
42
    require_peft_backend,
Arsalan's avatar
Arsalan committed
43
44
45
    require_torch_accelerator,
    require_torch_accelerator_with_fp16,
    require_torch_accelerator_with_training,
46
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
47
    skip_mps,
48
49
50
51
52
    slow,
    torch_all_close,
    torch_device,
)

53
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
54
55


56
57
58
59
60
if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer


61
logger = logging.get_logger(__name__)
62
63

enable_full_determinism()
64
65


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
def get_unet_lora_config():
    rank = 4
    unet_lora_config = LoraConfig(
        r=rank,
        lora_alpha=rank,
        target_modules=["to_q", "to_k", "to_v", "to_out.0"],
        init_lora_weights=False,
        use_dora=False,
    )
    return unet_lora_config


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


88
89
90
91
92
93
def create_ip_adapter_state_dict(model):
    # "ip_adapter" (cross-attention weights)
    ip_cross_attn_state_dict = {}
    key_id = 1

    for name in model.attn_processors.keys():
Aryan's avatar
Aryan committed
94
95
96
97
        cross_attention_dim = (
            None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim
        )

98
99
100
101
102
103
104
105
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
Aryan's avatar
Aryan committed
106

107
108
109
110
111
112
        if cross_attention_dim is not None:
            sd = IPAdapterAttnProcessor(
                hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
            ).state_dict()
            ip_cross_attn_state_dict.update(
                {
113
114
                    f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
                    f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
                }
            )

            key_id += 2

    # "image_proj" (ImageProjection layer weights)
    cross_attention_dim = model.config["cross_attention_dim"]
    image_projection = ImageProjection(
        cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4
    )

    ip_image_projection_state_dict = {}
    sd = image_projection.state_dict()
    ip_image_projection_state_dict.update(
        {
            "proj.weight": sd["image_embeds.weight"],
            "proj.bias": sd["image_embeds.bias"],
            "norm.weight": sd["norm.weight"],
            "norm.bias": sd["norm.bias"],
        }
    )

    del sd
    ip_state_dict = {}
    ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
    return ip_state_dict


143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def create_ip_adapter_plus_state_dict(model):
    # "ip_adapter" (cross-attention weights)
    ip_cross_attn_state_dict = {}
    key_id = 1

    for name in model.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
        if cross_attention_dim is not None:
            sd = IPAdapterAttnProcessor(
                hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
            ).state_dict()
            ip_cross_attn_state_dict.update(
                {
164
165
                    f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
                    f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
166
167
168
169
170
171
172
                }
            )

            key_id += 2

    # "image_proj" (ImageProjection layer weights)
    cross_attention_dim = model.config["cross_attention_dim"]
173
    image_projection = IPAdapterPlusImageProjection(
174
175
176
177
        embed_dims=cross_attention_dim, output_dims=cross_attention_dim, dim_head=32, heads=2, num_queries=4
    )

    ip_image_projection_state_dict = OrderedDict()
178
179
    keys = [k for k in image_projection.state_dict() if "layers." in k]
    print(keys)
180
181
182
    for k, v in image_projection.state_dict().items():
        if "2.to" in k:
            k = k.replace("2.to", "0.to")
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        elif "layers.0.ln0" in k:
            k = k.replace("layers.0.ln0", "layers.0.0.norm1")
        elif "layers.0.ln1" in k:
            k = k.replace("layers.0.ln1", "layers.0.0.norm2")
        elif "layers.1.ln0" in k:
            k = k.replace("layers.1.ln0", "layers.1.0.norm1")
        elif "layers.1.ln1" in k:
            k = k.replace("layers.1.ln1", "layers.1.0.norm2")
        elif "layers.2.ln0" in k:
            k = k.replace("layers.2.ln0", "layers.2.0.norm1")
        elif "layers.2.ln1" in k:
            k = k.replace("layers.2.ln1", "layers.2.0.norm2")
        elif "layers.3.ln0" in k:
            k = k.replace("layers.3.ln0", "layers.3.0.norm1")
        elif "layers.3.ln1" in k:
            k = k.replace("layers.3.ln1", "layers.3.0.norm2")
        elif "to_q" in k:
            parts = k.split(".")
            parts[2] = "attn"
            k = ".".join(parts)
        elif "to_out.0" in k:
            parts = k.split(".")
            parts[2] = "attn"
            k = ".".join(parts)
            k = k.replace("to_out.0", "to_out")
        else:
            k = k.replace("0.ff.0", "0.1.0")
            k = k.replace("0.ff.1.net.0.proj", "0.1.1")
            k = k.replace("0.ff.1.net.2", "0.1.3")

            k = k.replace("1.ff.0", "1.1.0")
            k = k.replace("1.ff.1.net.0.proj", "1.1.1")
            k = k.replace("1.ff.1.net.2", "1.1.3")

            k = k.replace("2.ff.0", "2.1.0")
            k = k.replace("2.ff.1.net.0.proj", "2.1.1")
            k = k.replace("2.ff.1.net.2", "2.1.3")

            k = k.replace("3.ff.0", "3.1.0")
            k = k.replace("3.ff.1.net.0.proj", "3.1.1")
            k = k.replace("3.ff.1.net.2", "3.1.3")

        # if "norm_cross" in k:
        #     ip_image_projection_state_dict[k.replace("norm_cross", "norm1")] = v
        # elif "layer_norm" in k:
        #     ip_image_projection_state_dict[k.replace("layer_norm", "norm2")] = v
        if "to_k" in k:
            parts = k.split(".")
            parts[2] = "attn"
            k = ".".join(parts)
233
234
235
236
237
238
239
240
241
242
243
            ip_image_projection_state_dict[k.replace("to_k", "to_kv")] = torch.cat([v, v], dim=0)
        elif "to_v" in k:
            continue
        else:
            ip_image_projection_state_dict[k] = v

    ip_state_dict = {}
    ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
    return ip_state_dict


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
def create_ip_adapter_faceid_state_dict(model):
    # "ip_adapter" (cross-attention weights)
    # no LoRA weights
    ip_cross_attn_state_dict = {}
    key_id = 1

    for name in model.attn_processors.keys():
        cross_attention_dim = (
            None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim
        )

        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]

        if cross_attention_dim is not None:
            sd = IPAdapterAttnProcessor(
                hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
            ).state_dict()
            ip_cross_attn_state_dict.update(
                {
                    f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
                    f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
                }
            )

            key_id += 2

    # "image_proj" (ImageProjection layer weights)
    cross_attention_dim = model.config["cross_attention_dim"]
    image_projection = IPAdapterFaceIDImageProjection(
        cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, mult=2, num_tokens=4
    )

    ip_image_projection_state_dict = {}
    sd = image_projection.state_dict()
    ip_image_projection_state_dict.update(
        {
            "proj.0.weight": sd["ff.net.0.proj.weight"],
            "proj.0.bias": sd["ff.net.0.proj.bias"],
            "proj.2.weight": sd["ff.net.2.weight"],
            "proj.2.bias": sd["ff.net.2.bias"],
            "norm.weight": sd["norm.weight"],
            "norm.bias": sd["norm.bias"],
        }
    )

    del sd
    ip_state_dict = {}
    ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
    return ip_state_dict


302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def create_custom_diffusion_layers(model, mock_weights: bool = True):
    train_kv = True
    train_q_out = True
    custom_diffusion_attn_procs = {}

    st = model.state_dict()
    for name, _ in model.attn_processors.items():
        cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
        layer_name = name.split(".processor")[0]
        weights = {
            "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"],
            "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"],
        }
        if train_q_out:
            weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"]
            weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"]
            weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"]
        if cross_attention_dim is not None:
            custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
                train_kv=train_kv,
                train_q_out=train_q_out,
                hidden_size=hidden_size,
                cross_attention_dim=cross_attention_dim,
            ).to(model.device)
            custom_diffusion_attn_procs[name].load_state_dict(weights)
            if mock_weights:
                # add 1 to weights to mock trained weights
                with torch.no_grad():
                    custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1
                    custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1
        else:
            custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
                train_kv=False,
                train_q_out=False,
                hidden_size=hidden_size,
                cross_attention_dim=cross_attention_dim,
            )
    del st
    return custom_diffusion_attn_procs


351
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
352
    model_class = UNet2DConditionModel
353
    main_input_name = "sample"
354
355
    # We override the items here because the unet under consideration is small.
    model_split_percents = [0.5, 0.3, 0.4]
356
357
358
359
360

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
361
        sizes = (16, 16)
362
363
364

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)
365
        encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
366
367
368
369
370

        return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}

    @property
    def input_shape(self):
371
        return (4, 16, 16)
372
373
374

    @property
    def output_shape(self):
375
        return (4, 16, 16)
376
377
378

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
379
380
            "block_out_channels": (4, 8),
            "norm_num_groups": 4,
381
382
            "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
383
384
            "cross_attention_dim": 8,
            "attention_head_dim": 2,
385
386
            "out_channels": 4,
            "in_channels": 4,
387
388
            "layers_per_block": 1,
            "sample_size": 16,
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_enable_works(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.enable_xformers_memory_efficient_attention()

        assert (
404
            model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
405
            == "XFormersAttnProcessor"
406
407
        ), "xformers is not enabled"

Arsalan's avatar
Arsalan committed
408
    @require_torch_accelerator_with_training
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

    def test_model_with_attention_head_dim_tuple(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

452
        init_dict["block_out_channels"] = (16, 32)
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_use_linear_projection(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["use_linear_projection"] = True

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

Sanchit Gandhi's avatar
Sanchit Gandhi committed
488
489
490
    def test_model_with_cross_attention_dim_tuple(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

491
        init_dict["cross_attention_dim"] = (8, 8)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_simple_projection(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        batch_size, _, _, sample_size = inputs_dict["sample"].shape

        init_dict["class_embed_type"] = "simple_projection"
        init_dict["projection_class_embeddings_input_dim"] = sample_size

        inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_class_embeddings_concat(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        batch_size, _, _, sample_size = inputs_dict["sample"].shape

        init_dict["class_embed_type"] = "simple_projection"
        init_dict["projection_class_embeddings_input_dim"] = sample_size
        init_dict["class_embeddings_concat"] = True

        inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

556
557
558
    def test_model_attention_slicing(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

559
        init_dict["block_out_channels"] = (16, 32)
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        model.set_attention_slice("auto")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice("max")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice(2)
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

Alexander Pivovarov's avatar
Alexander Pivovarov committed
581
    def test_model_sliceable_head_dim(self):
582
583
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

584
        init_dict["block_out_channels"] = (16, 32)
585
586
587
588
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)

Alexander Pivovarov's avatar
Alexander Pivovarov committed
589
        def check_sliceable_dim_attr(module: torch.nn.Module):
590
591
592
593
            if hasattr(module, "set_attention_slice"):
                assert isinstance(module.sliceable_head_dim, int)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
594
                check_sliceable_dim_attr(child)
595
596
597

        # retrieve number of attention layers
        for module in model.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
598
            check_sliceable_dim_attr(module)
599

600
601
602
    def test_gradient_checkpointing_is_applied(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

603
        init_dict["block_out_channels"] = (16, 32)
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        init_dict["attention_head_dim"] = (8, 16)

        model_class_copy = copy.copy(self.model_class)

        modules_with_gc_enabled = {}

        # now monkey patch the following function:
        #     def _set_gradient_checkpointing(self, module, value=False):
        #         if hasattr(module, "gradient_checkpointing"):
        #             module.gradient_checkpointing = value

        def _set_gradient_checkpointing_new(self, module, value=False):
            if hasattr(module, "gradient_checkpointing"):
                module.gradient_checkpointing = value
                modules_with_gc_enabled[module.__class__.__name__] = True

        model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new

        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

        EXPECTED_SET = {
            "CrossAttnUpBlock2D",
            "CrossAttnDownBlock2D",
            "UNetMidBlock2DCrossAttn",
            "UpBlock2D",
            "Transformer2DModel",
            "DownBlock2D",
        }

        assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

637
638
639
640
641
642
643
644
645
646
647
    def test_special_attn_proc(self):
        class AttnEasyProc(torch.nn.Module):
            def __init__(self, num):
                super().__init__()
                self.weight = torch.nn.Parameter(torch.tensor(num))
                self.is_run = False
                self.number = 0
                self.counter = 0

            def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
                batch_size, sequence_length, _ = hidden_states.shape
648
                attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

                query = attn.to_q(hidden_states)

                encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
                key = attn.to_k(encoder_hidden_states)
                value = attn.to_v(encoder_hidden_states)

                query = attn.head_to_batch_dim(query)
                key = attn.head_to_batch_dim(key)
                value = attn.head_to_batch_dim(value)

                attention_probs = attn.get_attention_scores(query, key, attention_mask)
                hidden_states = torch.bmm(attention_probs, value)
                hidden_states = attn.batch_to_head_dim(hidden_states)

                # linear proj
                hidden_states = attn.to_out[0](hidden_states)
                # dropout
                hidden_states = attn.to_out[1](hidden_states)

                hidden_states += self.weight

                self.is_run = True
                self.counter += 1
                self.number = number

                return hidden_states

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

680
        init_dict["block_out_channels"] = (16, 32)
681
682
683
684
685
686
687
688
689
690
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        processor = AttnEasyProc(5.0)

        model.set_attn_processor(processor)
        model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample

691
        assert processor.counter == 8
692
693
694
        assert processor.is_run
        assert processor.number == 123

695
696
697
698
699
700
701
702
703
704
705
706
    @parameterized.expand(
        [
            # fmt: off
            [torch.bool],
            [torch.long],
            [torch.float],
            # fmt: on
        ]
    )
    def test_model_xattn_mask(self, mask_dtype):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

707
        model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)})
708
709
710
711
712
713
714
715
716
717
718
        model.to(torch_device)
        model.eval()

        cond = inputs_dict["encoder_hidden_states"]
        with torch.no_grad():
            full_cond_out = model(**inputs_dict).sample
            assert full_cond_out is not None

            keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype)
            full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample
            assert full_cond_keepallmask_out.allclose(
719
                full_cond_out, rtol=1e-05, atol=1e-05
720
721
722
723
724
            ), "a 'keep all' mask should give the same result as no mask"

            trunc_cond = cond[:, :-1, :]
            trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample
            assert not trunc_cond_out.allclose(
725
                full_cond_out, rtol=1e-05, atol=1e-05
726
727
728
729
730
731
            ), "discarding the last token from our cond should change the result"

            batch, tokens, _ = cond.shape
            mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype)
            masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample
            assert masked_cond_out.allclose(
732
                trunc_cond_out, rtol=1e-05, atol=1e-05
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            ), "masking the last token from our cond should be equivalent to truncating that token out of the condition"

    # see diffusers.models.attention_processor::Attention#prepare_attention_mask
    # note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks.
    # since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric.
    # maybe it's fine that this only works for the unclip use-case.
    @mark.skip(
        reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length."
    )
    def test_model_xattn_padding(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
        model.to(torch_device)
        model.eval()

        cond = inputs_dict["encoder_hidden_states"]
        with torch.no_grad():
            full_cond_out = model(**inputs_dict).sample
            assert full_cond_out is not None

            batch, tokens, _ = cond.shape
            keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool)
            keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample
            assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result"

            trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool)
            trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample
            assert trunc_mask_out.allclose(
                keeplast_out
            ), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."

765
766
767
768
    def test_custom_diffusion_processors(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

769
        init_dict["block_out_channels"] = (16, 32)
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)

        # make sure we can set a list of attention processors
        model.set_attn_processor(custom_diffusion_attn_procs)
        model.to(torch_device)

        # test that attn processors can be set to itself
        model.set_attn_processor(model.attn_processors)

        with torch.no_grad():
            sample2 = model(**inputs_dict).sample

790
        assert (sample1 - sample2).abs().max() < 3e-3
791
792
793
794
795

    def test_custom_diffusion_save_load(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

796
        init_dict["block_out_channels"] = (16, 32)
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
        model.set_attn_processor(custom_diffusion_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
813
            model.save_attn_procs(tmpdirname, safe_serialization=False)
814
815
816
817
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin")
818
            new_model.to(torch_device)
819
820
821
822
823
824
825

        with torch.no_grad():
            new_sample = new_model(**inputs_dict).sample

        assert (sample - new_sample).abs().max() < 1e-4

        # custom diffusion and no custom diffusion should be the same
826
        assert (sample - old_sample).abs().max() < 3e-3
827
828
829
830
831
832
833
834
835

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_custom_diffusion_xformers_on_off(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

836
        init_dict["block_out_channels"] = (16, 32)
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
        custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
        model.set_attn_processor(custom_diffusion_attn_procs)

        # default
        with torch.no_grad():
            sample = model(**inputs_dict).sample

            model.enable_xformers_memory_efficient_attention()
            on_sample = model(**inputs_dict).sample

            model.disable_xformers_memory_efficient_attention()
            off_sample = model(**inputs_dict).sample

        assert (sample - on_sample).abs().max() < 1e-4
        assert (sample - off_sample).abs().max() < 1e-4

858
859
860
861
    def test_pickle(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

862
        init_dict["block_out_channels"] = (16, 32)
863
864
865
866
867
868
869
870
871
872
873
874
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample = model(**inputs_dict).sample

        sample_copy = copy.copy(sample)

        assert (sample - sample_copy).abs().max() < 1e-4

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    def test_asymmetrical_unet(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        # Add asymmetry to configs
        init_dict["transformer_layers_per_block"] = [[3, 2], 1]
        init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1]

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        output = model(**inputs_dict).sample
        expected_shape = inputs_dict["sample"].shape

        # Check if input and output shapes are the same
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

891
892
893
    def test_ip_adapter(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

894
        init_dict["block_out_channels"] = (16, 32)
895
896
897
898
899
900
901
902
903
904
905
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        # forward pass without ip-adapter
        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        # update inputs_dict for ip-adapter
        batch_size = inputs_dict["encoder_hidden_states"].shape[0]
906
        # for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim]
907
        image_embeds = floats_tensor((batch_size, 1, model.config.cross_attention_dim)).to(torch_device)
908
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
909
910
911
912
913
914
915
916
917
918

        # make ip_adapter_1 and ip_adapter_2
        ip_adapter_1 = create_ip_adapter_state_dict(model)

        image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()}
        cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()}
        ip_adapter_2 = {}
        ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2})

        # forward pass ip_adapter_1
919
        model._load_ip_adapter_weights([ip_adapter_1])
920
921
922
923
924
925
926
        assert model.config.encoder_hid_dim_type == "ip_image_proj"
        assert model.encoder_hid_proj is not None
        assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in (
            "IPAdapterAttnProcessor",
            "IPAdapterAttnProcessor2_0",
        )
        with torch.no_grad():
927
928
929
            sample2 = model(**inputs_dict).sample

        # forward pass with ip_adapter_2
930
        model._load_ip_adapter_weights([ip_adapter_2])
931
932
933
934
        with torch.no_grad():
            sample3 = model(**inputs_dict).sample

        # forward pass with ip_adapter_1 again
935
        model._load_ip_adapter_weights([ip_adapter_1])
936
937
938
        with torch.no_grad():
            sample4 = model(**inputs_dict).sample

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
        # forward pass with multiple ip-adapters and multiple images
        model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2])
        # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1
        for attn_processor in model.attn_processors.values():
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
                attn_processor.scale = [1, 0]
        image_embeds_multi = image_embeds.repeat(1, 2, 1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]}
        with torch.no_grad():
            sample5 = model(**inputs_dict).sample

        # forward pass with single ip-adapter & single image when image_embeds is not a list and a 2-d tensor
        image_embeds = image_embeds.squeeze(1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds}

        model._load_ip_adapter_weights(ip_adapter_1)
        with torch.no_grad():
            sample6 = model(**inputs_dict).sample

958
959
960
        assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4)
        assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4)
961
962
        assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
963
964
965
966

    def test_ip_adapter_plus(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

967
        init_dict["block_out_channels"] = (16, 32)
968
969
970
971
972
973
974
975
976
977
978
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        # forward pass without ip-adapter
        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        # update inputs_dict for ip-adapter
        batch_size = inputs_dict["encoder_hidden_states"].shape[0]
979
        # for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim]
980
        image_embeds = floats_tensor((batch_size, 1, 1, model.config.cross_attention_dim)).to(torch_device)
981
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
982
983
984
985
986
987
988
989
990
991

        # make ip_adapter_1 and ip_adapter_2
        ip_adapter_1 = create_ip_adapter_plus_state_dict(model)

        image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()}
        cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()}
        ip_adapter_2 = {}
        ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2})

        # forward pass ip_adapter_1
992
        model._load_ip_adapter_weights([ip_adapter_1])
993
994
995
996
997
998
999
        assert model.config.encoder_hid_dim_type == "ip_image_proj"
        assert model.encoder_hid_proj is not None
        assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in (
            "IPAdapterAttnProcessor",
            "IPAdapterAttnProcessor2_0",
        )
        with torch.no_grad():
1000
1001
1002
            sample2 = model(**inputs_dict).sample

        # forward pass with ip_adapter_2
1003
        model._load_ip_adapter_weights([ip_adapter_2])
1004
1005
1006
1007
        with torch.no_grad():
            sample3 = model(**inputs_dict).sample

        # forward pass with ip_adapter_1 again
1008
        model._load_ip_adapter_weights([ip_adapter_1])
1009
1010
1011
        with torch.no_grad():
            sample4 = model(**inputs_dict).sample

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
        # forward pass with multiple ip-adapters and multiple images
        model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2])
        # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1
        for attn_processor in model.attn_processors.values():
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
                attn_processor.scale = [1, 0]
        image_embeds_multi = image_embeds.repeat(1, 2, 1, 1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]}
        with torch.no_grad():
            sample5 = model(**inputs_dict).sample

        # forward pass with single ip-adapter & single image when image_embeds is a 3-d tensor
        image_embeds = image_embeds[:,].squeeze(1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds}

        model._load_ip_adapter_weights(ip_adapter_1)
        with torch.no_grad():
            sample6 = model(**inputs_dict).sample

1031
1032
1033
        assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4)
        assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4)
1034
1035
        assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
1036

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
    @require_peft_backend
    def test_lora(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        # forward pass without LoRA
        with torch.no_grad():
            non_lora_sample = model(**inputs_dict).sample

        unet_lora_config = get_unet_lora_config()
        model.add_adapter(unet_lora_config)

        assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."

        # forward pass with LoRA
        with torch.no_grad():
            lora_sample = model(**inputs_dict).sample

        assert not torch.allclose(
            non_lora_sample, lora_sample, atol=1e-4, rtol=1e-4
        ), "LoRA injected UNet should produce different results."

    @require_peft_backend
    def test_lora_serialization(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        # forward pass without LoRA
        with torch.no_grad():
            non_lora_sample = model(**inputs_dict).sample

        unet_lora_config = get_unet_lora_config()
        model.add_adapter(unet_lora_config)

        assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."

        # forward pass with LoRA
        with torch.no_grad():
            lora_sample_1 = model(**inputs_dict).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
            model.save_attn_procs(tmpdirname)
            model.unload_lora()
            model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

            assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."

            with torch.no_grad():
                lora_sample_2 = model(**inputs_dict).sample

        assert not torch.allclose(
            non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4
        ), "LoRA injected UNet should produce different results."
        assert torch.allclose(
            lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4
        ), "Loading from a saved checkpoint should produce identical results."

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
1106
        backend_empty_cache(torch_device)
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

    def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = UNet2DConditionModel.from_pretrained(
            model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision
        )
        model.to(torch_device).eval()

        return model

Arsalan's avatar
Arsalan committed
1124
    @require_torch_gpu
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
    def test_set_attention_slice_auto(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice("auto")

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

Arsalan's avatar
Arsalan committed
1144
    @require_torch_gpu
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
    def test_set_attention_slice_max(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice("max")

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

Arsalan's avatar
Arsalan committed
1164
    @require_torch_gpu
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
    def test_set_attention_slice_int(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice(2)

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

Arsalan's avatar
Arsalan committed
1184
    @require_torch_gpu
1185
1186
1187
1188
1189
    def test_set_attention_slice_list(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

Alexander Pivovarov's avatar
Alexander Pivovarov committed
1190
        # there are 32 sliceable layers
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
        slice_list = 16 * [2, 3]
        unet = self.get_unet_model()
        unet.set_attention_slice(slice_list)

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

    def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return hidden_states

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
            [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
            [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
            [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1221
    @require_torch_accelerator_with_fp16
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
    def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
        latents = self.get_latents(seed)
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
            [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
            [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
            [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1249
    @require_torch_accelerator_with_fp16
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
    def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
        latents = self.get_latents(seed, fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
            [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
            [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
            [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1277
1278
    @require_torch_accelerator
    @skip_mps
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
    def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5")
        latents = self.get_latents(seed)
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
            [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
            [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
            [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1306
    @require_torch_accelerator_with_fp16
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
    def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True)
        latents = self.get_latents(seed, fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
            [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
            [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
            [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1334
1335
    @require_torch_accelerator
    @skip_mps
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
    def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting")
        latents = self.get_latents(seed, shape=(4, 9, 64, 64))
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == (4, 4, 64, 64)

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

1351
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
            [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
            [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
            [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1363
    @require_torch_accelerator_with_fp16
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True)
        latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == (4, 4, 64, 64)

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
            [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
            [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
            [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1391
    @require_torch_accelerator_with_fp16
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
    def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
        latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)