test_amused.py 6.44 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AmusedPipeline
    params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = UVit2DModel(
41
            hidden_size=8,
Will Berman's avatar
Will Berman committed
42
43
            use_bias=False,
            hidden_dropout=0.0,
44
            cond_embed_dim=8,
Will Berman's avatar
Will Berman committed
45
46
            micro_cond_encode_dim=2,
            micro_cond_embed_dim=10,
47
            encoder_hidden_size=8,
Will Berman's avatar
Will Berman committed
48
            vocab_size=32,
49
50
51
            codebook_size=8,
            in_channels=8,
            block_out_channels=8,
Will Berman's avatar
Will Berman committed
52
53
54
55
56
57
58
            num_res_blocks=1,
            downsample=True,
            upsample=True,
            block_num_heads=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            attention_dropout=0.0,
59
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
60
61
62
63
64
65
66
            layer_norm_eps=1e-06,
            ln_elementwise_affine=True,
        )
        scheduler = AmusedScheduler(mask_token_id=31)
        torch.manual_seed(0)
        vqvae = VQModel(
            act_fn="silu",
67
            block_out_channels=[8],
Will Berman's avatar
Will Berman committed
68
69
70
71
            down_block_types=[
                "DownEncoderBlock2D",
            ],
            in_channels=3,
72
73
74
75
            latent_channels=8,
            layers_per_block=1,
            norm_num_groups=8,
            num_vq_embeddings=8,
Will Berman's avatar
Will Berman committed
76
            out_channels=3,
77
            sample_size=8,
Will Berman's avatar
Will Berman committed
78
79
80
81
82
83
84
85
86
87
            up_block_types=[
                "UpDecoderBlock2D",
            ],
            mid_block_add_attention=False,
            lookup_from_codebook=True,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
88
89
            hidden_size=8,
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
90
            layer_norm_eps=1e-05,
91
92
            num_attention_heads=1,
            num_hidden_layers=1,
Will Berman's avatar
Will Berman committed
93
94
            pad_token_id=1,
            vocab_size=1000,
95
            projection_dim=8,
Will Berman's avatar
Will Berman committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        )
        text_encoder = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "transformer": transformer,
            "scheduler": scheduler,
            "vqvae": vqvae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
            "height": 4,
            "width": 4,
        }
        return inputs

    def test_inference_batch_consistent(self, batch_sizes=[2]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)

    @unittest.skip("aMUSEd does not support lists of generators")
    def test_inference_batch_single_identical(self):
        ...


@slow
@require_torch_gpu
class AmusedPipelineSlowTests(unittest.TestCase):
    def test_amused_256(self):
136
        pipe = AmusedPipeline.from_pretrained("amused/amused-256")
Will Berman's avatar
Will Berman committed
137
138
139
140
141
142
143
144
145
146
147
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.4011, 0.3992, 0.3790, 0.3856, 0.3772, 0.3711, 0.3919, 0.3850, 0.3625])
        assert np.abs(image_slice - expected_slice).max() < 3e-3

    def test_amused_256_fp16(self):
148
        pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
149
150
151
152
153
154
155
156
157
158
159
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
        assert np.abs(image_slice - expected_slice).max() < 7e-3

    def test_amused_512(self):
160
        pipe = AmusedPipeline.from_pretrained("amused/amused-512")
Will Berman's avatar
Will Berman committed
161
162
163
164
165
166
167
168
169
170
171
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9960, 0.9960, 0.9946, 0.9980, 0.9947, 0.9932, 0.9960, 0.9961, 0.9947])
        assert np.abs(image_slice - expected_slice).max() < 3e-3

    def test_amused_512_fp16(self):
172
        pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
173
174
175
176
177
178
179
180
181
        pipe.to(torch_device)

        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images

        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.9983, 1.0, 1.0, 1.0, 1.0, 0.9989, 0.9994, 0.9976, 0.9977])
        assert np.abs(image_slice - expected_slice).max() < 3e-3