test_lora_layers_sd3.py 16.6 KB
Newer Older
Dhruv Nair's avatar
Dhruv Nair committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import os
Dhruv Nair's avatar
Dhruv Nair committed
16
import sys
17
import tempfile
Dhruv Nair's avatar
Dhruv Nair committed
18
19
import unittest

20
21
22
23
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel

Dhruv Nair's avatar
Dhruv Nair committed
24
from diffusers import (
25
    AutoencoderKL,
Dhruv Nair's avatar
Dhruv Nair committed
26
    FlowMatchEulerDiscreteScheduler,
27
    SD3Transformer2DModel,
Dhruv Nair's avatar
Dhruv Nair committed
28
29
    StableDiffusion3Pipeline,
)
30
from diffusers.utils.testing_utils import is_peft_available, require_peft_backend, require_torch_gpu, torch_device
Dhruv Nair's avatar
Dhruv Nair committed
31
32
33


if is_peft_available():
34
35
    from peft import LoraConfig
    from peft.utils import get_peft_model_state_dict
Dhruv Nair's avatar
Dhruv Nair committed
36
37
38

sys.path.append(".")

39
from utils import check_if_lora_correctly_set  # noqa: E402
Dhruv Nair's avatar
Dhruv Nair committed
40
41
42


@require_peft_backend
43
class SD3LoRATests(unittest.TestCase):
Dhruv Nair's avatar
Dhruv Nair committed
44
    pipeline_class = StableDiffusion3Pipeline
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = SD3Transformer2DModel(
            sample_size=32,
            patch_size=1,
            in_channels=4,
            num_layers=1,
            attention_head_dim=8,
            num_attention_heads=4,
            caption_projection_dim=32,
            joint_attention_dim=32,
            pooled_projection_dim=64,
            out_channels=4,
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)

        text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "text_encoder_3": text_encoder_3,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "tokenizer_3": tokenizer_3,
            "transformer": transformer,
            "vae": vae,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
        }
        return inputs

    def get_lora_config_for_transformer(self):
        lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=False,
        )
        return lora_config

    def get_lora_config_for_text_encoders(self):
        text_lora_config = LoraConfig(
            r=4,
            lora_alpha=4,
            init_lora_weights="gaussian",
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
        )
        return text_lora_config

    def test_simple_inference_with_transformer_lora_save_load(self):
        components = self.get_dummy_components()
        transformer_config = self.get_lora_config_for_transformer()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)

        pipe.transformer.add_adapter(transformer_config)
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        inputs = self.get_dummy_inputs(torch_device)
        images_lora = pipe(**inputs).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            transformer_state_dict = get_peft_model_state_dict(pipe.transformer)

            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname,
                transformer_lora_layers=transformer_state_dict,
            )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            pipe.unload_lora_weights()

            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        inputs = self.get_dummy_inputs(torch_device)
        images_lora_from_pretrained = pipe(**inputs).images
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

        self.assertTrue(
            np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
            "Loading from saved checkpoints should give same results.",
        )

    def test_simple_inference_with_clip_encoders_lora_save_load(self):
        components = self.get_dummy_components()
        transformer_config = self.get_lora_config_for_transformer()
        text_encoder_config = self.get_lora_config_for_text_encoders()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)

        pipe.transformer.add_adapter(transformer_config)
        pipe.text_encoder.add_adapter(text_encoder_config)
        pipe.text_encoder_2.add_adapter(text_encoder_config)

        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder.")
        self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2.")

        inputs = self.get_dummy_inputs(torch_device)
        images_lora = pipe(**inputs).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            transformer_state_dict = get_peft_model_state_dict(pipe.transformer)
            text_encoder_one_state_dict = get_peft_model_state_dict(pipe.text_encoder)
            text_encoder_two_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname,
                transformer_lora_layers=transformer_state_dict,
                text_encoder_lora_layers=text_encoder_one_state_dict,
                text_encoder_2_lora_layers=text_encoder_two_state_dict,
            )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            pipe.unload_lora_weights()

            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

        inputs = self.get_dummy_inputs(torch_device)
        images_lora_from_pretrained = pipe(**inputs).images
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text_encoder_one")
        self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text_encoder_two")

        self.assertTrue(
            np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
            "Loading from saved checkpoints should give same results.",
        )

    def test_simple_inference_with_transformer_lora_and_scale(self):
        components = self.get_dummy_components()
        transformer_lora_config = self.get_lora_config_for_transformer()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_no_lora = pipe(**inputs).images

        pipe.transformer.add_adapter(transformer_lora_config)
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

        inputs = self.get_dummy_inputs(torch_device)
        output_lora = pipe(**inputs).images
        self.assertTrue(
            not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
        )

        inputs = self.get_dummy_inputs(torch_device)
        output_lora_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.5}).images
        self.assertTrue(
            not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
            "Lora + scale should change the output",
        )

        inputs = self.get_dummy_inputs(torch_device)
        output_lora_0_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.0}).images
        self.assertTrue(
            np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
            "Lora + 0 scale should lead to same result as no LoRA",
        )

    def test_simple_inference_with_clip_encoders_lora_and_scale(self):
        components = self.get_dummy_components()
        transformer_lora_config = self.get_lora_config_for_transformer()
        text_encoder_config = self.get_lora_config_for_text_encoders()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_no_lora = pipe(**inputs).images

        pipe.transformer.add_adapter(transformer_lora_config)
        pipe.text_encoder.add_adapter(text_encoder_config)
        pipe.text_encoder_2.add_adapter(text_encoder_config)
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text_encoder_one")
        self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text_encoder_two")

        inputs = self.get_dummy_inputs(torch_device)
        output_lora = pipe(**inputs).images
        self.assertTrue(
            not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
        )

        inputs = self.get_dummy_inputs(torch_device)
        output_lora_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.5}).images
        self.assertTrue(
            not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
            "Lora + scale should change the output",
        )

        inputs = self.get_dummy_inputs(torch_device)
        output_lora_0_scale = pipe(**inputs, joint_attention_kwargs={"scale": 0.0}).images
        self.assertTrue(
            np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
            "Lora + 0 scale should lead to same result as no LoRA",
        )

    def test_simple_inference_with_transformer_fused(self):
        components = self.get_dummy_components()
        transformer_lora_config = self.get_lora_config_for_transformer()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_no_lora = pipe(**inputs).images

        pipe.transformer.add_adapter(transformer_lora_config)
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

        pipe.fuse_lora()
        # Fusing should still keep the LoRA layers
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

        inputs = self.get_dummy_inputs(torch_device)
        ouput_fused = pipe(**inputs).images
        self.assertFalse(
            np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
        )

    def test_simple_inference_with_transformer_fused_with_no_fusion(self):
        components = self.get_dummy_components()
        transformer_lora_config = self.get_lora_config_for_transformer()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_no_lora = pipe(**inputs).images

        pipe.transformer.add_adapter(transformer_lora_config)
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        inputs = self.get_dummy_inputs(torch_device)
        ouput_lora = pipe(**inputs).images

        pipe.fuse_lora()
        # Fusing should still keep the LoRA layers
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

        inputs = self.get_dummy_inputs(torch_device)
        ouput_fused = pipe(**inputs).images
        self.assertFalse(
            np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
        )
        self.assertTrue(
            np.allclose(ouput_fused, ouput_lora, atol=1e-3, rtol=1e-3),
            "Fused lora output should be changed when LoRA isn't fused but still effective.",
        )

    def test_simple_inference_with_transformer_fuse_unfuse(self):
        components = self.get_dummy_components()
        transformer_lora_config = self.get_lora_config_for_transformer()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_no_lora = pipe(**inputs).images

        pipe.transformer.add_adapter(transformer_lora_config)
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

        pipe.fuse_lora()
        # Fusing should still keep the LoRA layers
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        inputs = self.get_dummy_inputs(torch_device)
        ouput_fused = pipe(**inputs).images
        self.assertFalse(
            np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
        )

        pipe.unfuse_lora()
        self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
        inputs = self.get_dummy_inputs(torch_device)
        output_unfused_lora = pipe(**inputs).images
        self.assertTrue(
            np.allclose(ouput_fused, output_unfused_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
        )
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

    @require_torch_gpu
    def test_sd3_lora(self):
        """
        Test loading the loras that are saved with the diffusers and peft formats.
        Related PR: https://github.com/huggingface/diffusers/pull/8584
        """
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        lora_model_id = "hf-internal-testing/tiny-sd3-loras"

        lora_filename = "lora_diffusers_format.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.unload_lora_weights()

        lora_filename = "lora_peft_format.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)