test_dit.py 5.35 KB
Newer Older
Kashif Rasul's avatar
Kashif Rasul committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Kashif Rasul's avatar
Kashif Rasul committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

22
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DiTTransformer2DModel, DPMSolverMultistepScheduler
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from diffusers.utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device
Kashif Rasul's avatar
Kashif Rasul committed
25

26
from ..pipeline_params import (
27
28
29
    CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
    CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
30
from ..test_pipelines_common import PipelineTesterMixin
Kashif Rasul's avatar
Kashif Rasul committed
31
32


33
enable_full_determinism()
Kashif Rasul's avatar
Kashif Rasul committed
34
35
36
37


class DiTPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = DiTPipeline
38
39
40
41
42
43
44
45
    params = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {
        "latents",
        "num_images_per_prompt",
        "callback",
        "callback_steps",
    }
    batch_params = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
Kashif Rasul's avatar
Kashif Rasul committed
46
47
48

    def get_dummy_components(self):
        torch.manual_seed(0)
49
        transformer = DiTTransformer2DModel(
50
            sample_size=16,
Kashif Rasul's avatar
Kashif Rasul committed
51
            num_layers=2,
52
53
            patch_size=4,
            attention_head_dim=8,
Kashif Rasul's avatar
Kashif Rasul committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            num_attention_heads=2,
            in_channels=4,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_zero",
            norm_elementwise_affine=False,
        )
        vae = AutoencoderKL()
        scheduler = DDIMScheduler()
        components = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "class_labels": [1],
            "generator": generator,
            "num_inference_steps": 2,
77
            "output_type": "np",
Kashif Rasul's avatar
Kashif Rasul committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

93
        self.assertEqual(image.shape, (1, 16, 16, 3))
94
        expected_slice = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457])
Kashif Rasul's avatar
Kashif Rasul committed
95
96
97
98
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_inference_batch_single_identical(self):
99
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)
Kashif Rasul's avatar
Kashif Rasul committed
100
101
102
103
104
105
106

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
Kashif Rasul's avatar
Kashif Rasul committed
107
108


Dhruv Nair's avatar
Dhruv Nair committed
109
@nightly
Kashif Rasul's avatar
Kashif Rasul committed
110
111
@require_torch_gpu
class DiTPipelineIntegrationTests(unittest.TestCase):
112
113
114
115
116
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Kashif Rasul's avatar
Kashif Rasul committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_dit_256(self):
        generator = torch.manual_seed(0)

        pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256")
        pipe.to("cuda")

        words = ["vase", "umbrella", "white shark", "white wolf"]
        ids = pipe.get_label_ids(words)

        images = pipe(ids, generator=generator, num_inference_steps=40, output_type="np").images

        for word, image in zip(words, images):
            expected_image = load_numpy(
                f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy"
            )
Kashif Rasul's avatar
Kashif Rasul committed
137
            assert np.abs((expected_image - image).max()) < 1e-2
Kashif Rasul's avatar
Kashif Rasul committed
138

139
140
    def test_dit_512(self):
        pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512")
Kashif Rasul's avatar
Kashif Rasul committed
141
142
143
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

144
        words = ["vase", "umbrella"]
Kashif Rasul's avatar
Kashif Rasul committed
145
146
        ids = pipe.get_label_ids(words)

147
        generator = torch.manual_seed(0)
Kashif Rasul's avatar
Kashif Rasul committed
148
149
150
151
152
        images = pipe(ids, generator=generator, num_inference_steps=25, output_type="np").images

        for word, image in zip(words, images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
153
                f"/dit/{word}_512.npy"
Kashif Rasul's avatar
Kashif Rasul committed
154
            )
155

156
            assert np.abs((expected_image - image).max()) < 1e-1