test_pixart.py 15 KB
Newer Older
Sayak Paul's avatar
Sayak Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    PixArtAlphaPipeline,
    Transformer2DModel,
)
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class PixArtAlphaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = PixArtAlphaPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS

    required_optional_params = PipelineTesterMixin.required_optional_params

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = Transformer2DModel(
            sample_size=8,
            num_layers=2,
            patch_size=2,
            attention_head_dim=8,
            num_attention_heads=3,
            caption_channels=32,
            in_channels=4,
            cross_attention_dim=24,
            out_channels=8,
            attention_bias=True,
            activation_fn="gelu-approximate",
            num_embeds_ada_norm=1000,
            norm_type="ada_norm_single",
            norm_elementwise_affine=False,
            norm_eps=1e-6,
        )
67
        torch.manual_seed(0)
Sayak Paul's avatar
Sayak Paul committed
68
        vae = AutoencoderKL()
69

Sayak Paul's avatar
Sayak Paul committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        scheduler = DDIMScheduler()
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
94
95
            "use_resolution_binning": False,
            "output_type": "np",
Sayak Paul's avatar
Sayak Paul committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        }
        return inputs

    def test_sequential_cpu_offload_forward_pass(self):
        # TODO(PVP, Sayak) need to fix later
        return

    def test_save_load_optional_components(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

116
117
118
119
120
121
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = pipe.encode_prompt(prompt)
Sayak Paul's avatar
Sayak Paul committed
122
123
124
125

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
126
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
127
128
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
129
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
130
131
132
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
133
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
163
            "prompt_attention_mask": prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
164
165
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
166
            "negative_prompt_attention_mask": negative_prompt_attention_mask,
Sayak Paul's avatar
Sayak Paul committed
167
168
169
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
170
            "use_resolution_binning": False,
Sayak Paul's avatar
Sayak Paul committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (1, 8, 8, 3))
191
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
Sayak Paul's avatar
Sayak Paul committed
192
193
194
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

195
196
197
198
199
200
201
202
203
204
205
206
    def test_inference_non_square_images(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs, height=32, width=48).images
        image_slice = image[0, -3:, -3:, -1]
        self.assertEqual(image.shape, (1, 32, 48, 3))
207

208
        expected_slice = np.array([0.6493, 0.537, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263])
209
210
211
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

212
213
214
215
216
217
218
219
220
221
222
223
224
    def test_inference_with_embeddings_and_multiple_images(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = inputs["prompt"]
        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

225
        prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt)
226
227
228
229

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
230
            "prompt_attention_mask": prompt_attn_mask,
231
232
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
233
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
234
235
236
237
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
238
            "use_resolution_binning": False,
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        }

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)

        generator = inputs["generator"]
        num_inference_steps = inputs["num_inference_steps"]
        output_type = inputs["output_type"]

        # inputs with prompt converted to embeddings
        inputs = {
            "prompt_embeds": prompt_embeds,
268
            "prompt_attention_mask": prompt_attn_mask,
269
270
            "negative_prompt": None,
            "negative_prompt_embeds": negative_prompt_embeds,
271
            "negative_prompt_attention_mask": neg_prompt_attn_mask,
272
273
274
275
            "generator": generator,
            "num_inference_steps": num_inference_steps,
            "output_type": output_type,
            "num_images_per_prompt": 2,
276
            "use_resolution_binning": False,
277
278
279
280
281
282
283
        }

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, 1e-4)

284
285
286
287
288
289
290
291
292
293
294
295
296
297
    def test_inference_with_multiple_images_per_prompt(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["num_images_per_prompt"] = 2
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        self.assertEqual(image.shape, (2, 8, 8, 3))
298
        expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.483, 0.2583, 0.5331, 0.4852])
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_raises_warning_for_mask_feature(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"mask_feature": True})

        with self.assertWarns(FutureWarning) as warning_ctx:
            _ = pipe(**inputs).images

        assert "mask_feature" in str(warning_ctx.warning)

Sayak Paul's avatar
Sayak Paul committed
318
319
320
321
322
323
324
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)


@slow
@require_torch_gpu
class PixArtAlphaPipelineIntegrationTests(unittest.TestCase):
325
326
327
328
    ckpt_id_1024 = "PixArt-alpha/PixArt-XL-2-1024-MS"
    ckpt_id_512 = "PixArt-alpha/PixArt-XL-2-512x512"
    prompt = "A small cactus with a happy face in the Sahara desert."

Sayak Paul's avatar
Sayak Paul committed
329
330
331
332
333
334
335
336
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_pixart_1024(self):
        generator = torch.manual_seed(0)

337
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
338
        pipe.enable_model_cpu_offload()
339
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
340
341
342
343
344

        image = pipe(prompt, generator=generator, output_type="np").images

        image_slice = image[0, -3:, -3:, -1]

345
        expected_slice = np.array([0.1941, 0.2117, 0.2188, 0.1946, 0.218, 0.2124, 0.199, 0.2437, 0.2583])
Sayak Paul's avatar
Sayak Paul committed
346
347
348
349
350
351
352

        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)

    def test_pixart_512(self):
        generator = torch.manual_seed(0)

353
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
Sayak Paul's avatar
Sayak Paul committed
354
355
        pipe.enable_model_cpu_offload()

356
        prompt = self.prompt
Sayak Paul's avatar
Sayak Paul committed
357
358
359
360
361

        image = pipe(prompt, generator=generator, output_type="np").images

        image_slice = image[0, -3:, -3:, -1]

362
        expected_slice = np.array([0.2637, 0.291, 0.2939, 0.207, 0.2512, 0.2783, 0.2168, 0.2324, 0.2817])
Sayak Paul's avatar
Sayak Paul committed
363
364
365

        max_diff = np.abs(image_slice.flatten() - expected_slice).max()
        self.assertLessEqual(max_diff, 1e-3)
366
367
368
369

    def test_pixart_1024_without_resolution_binning(self):
        generator = torch.manual_seed(0)

370
        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16)
371
372
        pipe.enable_model_cpu_offload()

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        prompt = self.prompt
        height, width = 1024, 768
        num_inference_steps = 10

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]
398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)

    def test_pixart_512_without_resolution_binning(self):
        generator = torch.manual_seed(0)

        pipe = PixArtAlphaPipeline.from_pretrained(self.ckpt_id_512, torch_dtype=torch.float16)
        pipe.enable_model_cpu_offload()

        prompt = self.prompt
        height, width = 512, 768
        num_inference_steps = 10

        image = pipe(
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
        ).images
419
420
421
422
        image_slice = image[0, -3:, -3:, -1]

        generator = torch.manual_seed(0)
        no_res_bin_image = pipe(
423
424
425
426
427
428
429
            prompt,
            height=height,
            width=width,
            generator=generator,
            num_inference_steps=num_inference_steps,
            output_type="np",
            use_resolution_binning=False,
430
431
432
433
        ).images
        no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1]

        assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)