test_unclip_image_variation.py 16.6 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
23
24
25
26
27
28
29
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)
Will Berman's avatar
Will Berman committed
30

31
32
33
34
35
36
37
from diffusers import (
    DiffusionPipeline,
    UnCLIPImageVariationPipeline,
    UnCLIPScheduler,
    UNet2DConditionModel,
    UNet2DModel,
)
Will Berman's avatar
Will Berman committed
38
39
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
40
from diffusers.utils.testing_utils import load_image, require_torch_gpu, skip_mps
Will Berman's avatar
Will Berman committed
41

42
43
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
44
45


46
47
48
49
torch.backends.cuda.matmul.allow_tf32 = False
torch.use_deterministic_algorithms(True)


50
51
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPImageVariationPipeline
52
53
    params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
    batch_params = IMAGE_VARIATION_BATCH_PARAMS
Will Berman's avatar
Will Berman committed
54

55
56
57
58
59
60
    required_optional_params = [
        "generator",
        "return_dict",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
61
    test_xformers_attention = False
Will Berman's avatar
Will Berman committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            num_hidden_layers=5,
            num_attention_heads=4,
            image_size=32,
            intermediate_size=37,
            patch_size=1,
        )
        return CLIPVisionModelWithProjection(config)

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
137
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
159
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

183
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)

        image_encoder = self.dummy_image_encoder

207
208
209
210
211
212
213
214
215
216
217
218
        return {
            "decoder": decoder,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_proj": text_proj,
            "feature_extractor": feature_extractor,
            "image_encoder": image_encoder,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }
Will Berman's avatar
Will Berman committed
219

220
    def get_dummy_inputs(self, device, seed=0, pil_image=True):
Will Berman's avatar
Will Berman committed
221
        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
222
223
224
225
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
Will Berman's avatar
Will Berman committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "image": input_image,
            "generator": generator,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
            "output_type": "np",
        }

    def test_unclip_image_variation_input_tensor(self):
        device = "cpu"

244
245
246
247
248
249
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)
Will Berman's avatar
Will Berman committed
250

251
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
Will Berman's avatar
Will Berman committed
252
253
254
255

        output = pipe(**pipeline_inputs)
        image = output.images

256
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
Will Berman's avatar
Will Berman committed
257
258
259
260
261
262
263
264
265

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

266
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
267
268
269
270

        expected_slice = np.array(
            [
                0.9997,
271
272
273
274
275
276
277
278
                0.0002,
                0.9997,
                0.9997,
                0.9969,
                0.0023,
                0.9997,
                0.9969,
                0.9970,
Will Berman's avatar
Will Berman committed
279
280
281
282
283
284
285
286
287
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_image(self):
        device = "cpu"

288
        components = self.get_dummy_components()
Will Berman's avatar
Will Berman committed
289

290
291
292
293
294
295
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
296
297
298
299

        output = pipe(**pipeline_inputs)
        image = output.images

300
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
301
302
303
304
305
306
307
308
309

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

310
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
311

312
        expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])
Will Berman's avatar
Will Berman committed
313
314
315
316
317
318
319

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_list_images(self):
        device = "cpu"

320
        components = self.get_dummy_components()
Will Berman's avatar
Will Berman committed
321

322
323
324
325
326
327
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
328
329
330
331
332
333
334
335
        pipeline_inputs["image"] = [
            pipeline_inputs["image"],
            pipeline_inputs["image"],
        ]

        output = pipe(**pipeline_inputs)
        image = output.images

336
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
337
338
339
340
341
342
343
344
345
346
347
348
349
        tuple_pipeline_inputs["image"] = [
            tuple_pipeline_inputs["image"],
            tuple_pipeline_inputs["image"],
        ]

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

350
        assert image.shape == (2, 64, 64, 3)
Will Berman's avatar
Will Berman committed
351
352
353
354

        expected_slice = np.array(
            [
                0.9997,
355
356
357
358
359
360
361
362
                0.9989,
                0.0008,
                0.0021,
                0.9960,
                0.0018,
                0.0014,
                0.0002,
                0.9933,
Will Berman's avatar
Will Berman committed
363
364
365
366
367
368
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

369
370
371
372
373
374
    def test_unclip_passed_image_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

375
376
377
378
379
380
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)
381
382
383
384
385

        generator = torch.Generator(device=device).manual_seed(0)
        dtype = pipe.decoder.dtype
        batch_size = 1

386
387
388
389
390
391
        shape = (
            batch_size,
            pipe.decoder.config.in_channels,
            pipe.decoder.config.sample_size,
            pipe.decoder.config.sample_size,
        )
392
393
394
395
396
397
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
398
399
400
            pipe.super_res_first.config.in_channels // 2,
            pipe.super_res_first.config.sample_size,
            pipe.super_res_first.config.sample_size,
401
402
403
404
405
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

406
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
407
408
409
410
411

        img_out_1 = pipe(
            **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
        ).images

412
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        # Don't pass image, instead pass embedding
        image = pipeline_inputs.pop("image")
        image_embeddings = pipe.image_encoder(image).image_embeds

        img_out_2 = pipe(
            **pipeline_inputs,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            image_embeddings=image_embeddings,
        ).images

        # make sure passing text embeddings manually is identical
        assert np.abs(img_out_1 - img_out_2).max() < 1e-4

427
428
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
429
    @skip_mps
430
431
432
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

433
434
435
436
437
438
        # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
        expected_max_diff = 1e-2

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
        )
439
440
441

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
442
    @skip_mps
443
444
445
    def test_inference_batch_single_identical(self):
        test_max_difference = torch_device == "cpu"
        relax_max_difference = True
446
447
448
449
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
450
451

        self._test_inference_batch_single_identical(
452
453
454
            test_max_difference=test_max_difference,
            relax_max_difference=relax_max_difference,
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
455
456
457
        )

    def test_inference_batch_consistent(self):
458
459
460
461
462
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

463
464
465
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
466
467
468
469
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
470
        else:
471
472
473
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
474

475
    @skip_mps
476
477
478
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

479
    @skip_mps
480
481
482
    def test_save_load_local(self):
        return super().test_save_load_local()

483
    @skip_mps
484
485
486
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

Will Berman's avatar
Will Berman committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

@slow
@require_torch_gpu
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_image_variation_karlo(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
        )

506
        pipeline = UnCLIPImageVariationPipeline.from_pretrained(
507
            "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
508
        )
Will Berman's avatar
Will Berman committed
509
510
511
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

512
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
513
514
515
516
517
518
        output = pipeline(
            input_image,
            generator=generator,
            output_type="np",
        )

519
        image = output.images[0]
Will Berman's avatar
Will Berman committed
520
521

        assert image.shape == (256, 256, 3)
522

523
        assert_mean_pixel_difference(image, expected_image, 15)