test_versatile_diffusion_mega.py 4.68 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch

from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class VersatileDiffusionMegaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pass


@slow
@require_torch_gpu
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_from_pretrained_save_pretrained(self):
        pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt_image = load_image(
            "https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
        )

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe.dual_guided(
            prompt="first prompt",
            image=prompt_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        ).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator = generator.manual_seed(0)
        new_image = pipe.dual_guided(
            prompt="first prompt",
            image=prompt_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        ).images

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"

    def test_inference_dual_guided_then_text_to_image(self):
        pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "cyberpunk 2077"
        init_image = load_image(
            "https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
        )
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe.dual_guided(
            prompt=prompt,
            image=init_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=50,
            output_type="numpy",
        ).images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
107
        expected_slice = np.array([0.0081, 0.0032, 0.0002, 0.0056, 0.0027, 0.0000, 0.0051, 0.0020, 0.0007])
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

        prompt = "A painting of a squirrel eating a burger "
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = pipe.text_to_image(
            prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
        ).images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

122
        image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
123
124
125
126

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
127
        expected_slice = np.array([0.3479, 0.1943, 0.1060, 0.3894, 0.2537, 0.1394, 0.3989, 0.3191, 0.1987])
128
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2