test_lora_layers_peft.py 93.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import copy
16
import gc
17
import importlib
18
19
import os
import tempfile
20
import time
21
22
23
24
25
import unittest

import numpy as np
import torch
import torch.nn as nn
26
from huggingface_hub import hf_hub_download
27
from huggingface_hub.repocard import RepoCard
28
from packaging import version
29
30
31
32
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
33
    AutoPipelineForImage2Image,
34
    ControlNetModel,
35
    DDIMScheduler,
36
    DiffusionPipeline,
37
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
    StableDiffusionPipeline,
40
    StableDiffusionXLControlNetPipeline,
41
42
43
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
44
45
46
47
48
from diffusers.utils.import_utils import is_accelerate_available, is_peft_available
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_image,
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
49
    numpy_cosine_similarity_distance,
50
    require_peft_backend,
51
    require_peft_version_greater,
52
53
54
55
56
    require_torch_gpu,
    slow,
    torch_device,
)

57

58
59
if is_accelerate_available():
    from accelerate.utils import release_memory
60
61
62
63
64
65
66

if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


67
68
69
70
71
72
73
74
75
76
77
78
def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


79
80
81
82
83
84
85
86
87
88
@require_peft_backend
class PeftLoraLoaderMixinTests:
    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
    has_two_text_encoders = False
    unet_kwargs = None
    vae_kwargs = None

Patrick von Platen's avatar
Patrick von Platen committed
89
90
    def get_dummy_components(self, scheduler_cls=None):
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler
91
        rank = 4
Patrick von Platen's avatar
Patrick von Platen committed
92

93
94
        torch.manual_seed(0)
        unet = UNet2DConditionModel(**self.unet_kwargs)
95

Patrick von Platen's avatar
Patrick von Platen committed
96
        scheduler = scheduler_cls(**self.scheduler_kwargs)
97

98
99
        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)
100

101
102
103
104
105
106
107
108
        text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
        tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        if self.has_two_text_encoders:
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        text_lora_config = LoraConfig(
109
110
111
112
            r=rank,
            lora_alpha=rank,
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
            init_lora_weights=False,
113
114
        )

115
        unet_lora_config = LoraConfig(
116
            r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
117
118
        )

119
120
121
122
123
124
125
126
127
        if self.has_two_text_encoders:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "text_encoder_2": text_encoder_2,
                "tokenizer_2": tokenizer_2,
128
129
                "image_encoder": None,
                "feature_extractor": None,
130
131
132
133
134
135
136
137
138
139
            }
        else:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "safety_checker": None,
                "feature_extractor": None,
140
                "image_encoder": None,
141
            }
142
143

        return pipeline_components, text_lora_config, unet_lora_config
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def check_if_lora_correctly_set(self, model) -> bool:
        """
        Checks if the LoRA layers are correctly set with peft
        """
        for module in model.modules():
            if isinstance(module, BaseTunerLayer):
                return True
        return False

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
189
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
190
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
194

Patrick von Platen's avatar
Patrick von Platen committed
195
196
197
            _, _, inputs = self.get_dummy_inputs()
            output_no_lora = pipe(**inputs).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
198
199
200
201
202
203

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
204
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
205
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
209
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
210

Patrick von Platen's avatar
Patrick von Platen committed
211
212
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
213

Patrick von Platen's avatar
Patrick von Platen committed
214
            pipe.text_encoder.add_adapter(text_lora_config)
215
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
216
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
217
218
            )

Patrick von Platen's avatar
Patrick von Platen committed
219
220
221
222
223
224
225
226
227
228
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
229
230
231
232
233
234

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
235
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
236
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
237
238
239
240
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
241

Patrick von Platen's avatar
Patrick von Platen committed
242
243
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
244

Patrick von Platen's avatar
Patrick von Platen committed
245
            pipe.text_encoder.add_adapter(text_lora_config)
246
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
247
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
248
249
            )

Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
253
254
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
255

Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
260

Patrick von Platen's avatar
Patrick von Platen committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
276
277
278
279
280
281

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
282
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
283
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
284
285
286
287
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
288

Patrick von Platen's avatar
Patrick von Platen committed
289
290
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
291

Patrick von Platen's avatar
Patrick von Platen committed
292
            pipe.text_encoder.add_adapter(text_lora_config)
293
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
294
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
295
296
            )

Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
301
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
302

Patrick von Platen's avatar
Patrick von Platen committed
303
304
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
305
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
306
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
307
308
            )

Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
316
317
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
318
319
320
321
322
323

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
324
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
325
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
326
327
328
329
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
330

Patrick von Platen's avatar
Patrick von Platen committed
331
332
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
333

Patrick von Platen's avatar
Patrick von Platen committed
334
            pipe.text_encoder.add_adapter(text_lora_config)
335
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
336
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
337
338
            )

Patrick von Platen's avatar
Patrick von Platen committed
339
340
341
342
343
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
344

Patrick von Platen's avatar
Patrick von Platen committed
345
346
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
347
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
348
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
349
350
            )

Patrick von Platen's avatar
Patrick von Platen committed
351
352
353
354
355
356
357
358
359
360
361
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
362
363
364
365
366

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Patrick von Platen's avatar
Patrick von Platen committed
367
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
368
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
369
370
371
372
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
373

Patrick von Platen's avatar
Patrick von Platen committed
374
375
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
376

Patrick von Platen's avatar
Patrick von Platen committed
377
            pipe.text_encoder.add_adapter(text_lora_config)
378
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
379
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
380
381
382
            )

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
386
387
                )

Patrick von Platen's avatar
Patrick von Platen committed
388
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
389

Patrick von Platen's avatar
Patrick von Platen committed
390
391
392
393
            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
394

Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
398
399
400
401
402
403
404
405
406
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        safe_serialization=False,
                    )
407

Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
412
413
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
414
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
415
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
416
417
            )

Patrick von Platen's avatar
Patrick von Platen committed
418
419
420
421
422
423
424
425
426
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
427
428
429
430
431

    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Patrick von Platen's avatar
Patrick von Platen committed
432
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
433
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
434
435
436
437
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
438

Patrick von Platen's avatar
Patrick von Platen committed
439
440
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
441

Patrick von Platen's avatar
Patrick von Platen committed
442
            pipe.text_encoder.add_adapter(text_lora_config)
443
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
444
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
445
446
            )

Patrick von Platen's avatar
Patrick von Platen committed
447
448
449
450
451
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
452

Patrick von Platen's avatar
Patrick von Platen committed
453
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
454

Patrick von Platen's avatar
Patrick von Platen committed
455
456
            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)
457

Patrick von Platen's avatar
Patrick von Platen committed
458
459
                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(self.torch_device)
460
461

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
462
463
                self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
464
465
            )

Patrick von Platen's avatar
Patrick von Platen committed
466
467
468
469
470
471
472
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                    "Lora not correctly set in text encoder 2",
                )

            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
473

Patrick von Platen's avatar
Patrick von Platen committed
474
475
476
477
            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
478

479
480
481
482
    def test_simple_inference_with_text_unet_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Patrick von Platen's avatar
Patrick von Platen committed
483
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
484
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
485
486
487
488
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
489

Patrick von Platen's avatar
Patrick von Platen committed
490
491
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
492

Patrick von Platen's avatar
Patrick von Platen committed
493
494
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
495
496

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
497
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
498
            )
Patrick von Platen's avatar
Patrick von Platen committed
499
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
500
501

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
502
503
504
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
505
506
                )

Patrick von Platen's avatar
Patrick von Platen committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                unet_state_dict = get_peft_model_state_dict(pipe.unet)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
540

Patrick von Platen's avatar
Patrick von Platen committed
541
542
543
544
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
545
546

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
547
548
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
549
            )
550

551
552
553
554
555
    def test_simple_inference_with_text_unet_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
556
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
557
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
572

Patrick von Platen's avatar
Patrick von Platen committed
573
574
575
576
577
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
578

Patrick von Platen's avatar
Patrick von Platen committed
579
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
580
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
581
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
582
583
            )

Patrick von Platen's avatar
Patrick von Platen committed
584
585
586
587
588
589
590
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
591

Patrick von Platen's avatar
Patrick von Platen committed
592
593
594
595
596
597
598
            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
599

Patrick von Platen's avatar
Patrick von Platen committed
600
601
602
603
            self.assertTrue(
                pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                "The scaling parameter has not been correctly restored!",
            )
604

605
606
607
608
609
    def test_simple_inference_with_text_lora_unet_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Patrick von Platen's avatar
Patrick von Platen committed
610
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
611
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
612
613
614
615
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
616

Patrick von Platen's avatar
Patrick von Platen committed
617
618
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
619

Patrick von Platen's avatar
Patrick von Platen committed
620
621
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
622
623

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
624
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
625
            )
Patrick von Platen's avatar
Patrick von Platen committed
626
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
627

Patrick von Platen's avatar
Patrick von Platen committed
628
629
630
631
632
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
633

Patrick von Platen's avatar
Patrick von Platen committed
634
635
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
636
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
637
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
638
            )
Patrick von Platen's avatar
Patrick von Platen committed
639
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet")
640

Patrick von Platen's avatar
Patrick von Platen committed
641
642
643
644
645
646
647
648
649
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
650
651
652
653
654
655

    def test_simple_inference_with_text_unet_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
656
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
657
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
658
659
660
661
662
663
664
665
666
667
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
668
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
669
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
670
            )
Patrick von Platen's avatar
Patrick von Platen committed
671
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
672

Patrick von Platen's avatar
Patrick von Platen committed
673
674
675
676
677
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
678

Patrick von Platen's avatar
Patrick von Platen committed
679
680
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
681
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
682
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
683
            )
Patrick von Platen's avatar
Patrick von Platen committed
684
            self.assertFalse(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet")
685

Patrick von Platen's avatar
Patrick von Platen committed
686
687
688
689
690
691
692
693
694
695
696
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
697

698
699
700
701
702
    def test_simple_inference_with_text_unet_lora_unfused(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
703
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
704
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
705
706
707
708
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
709

Patrick von Platen's avatar
Patrick von Platen committed
710
711
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
712

713
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
714
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
715
            )
Patrick von Platen's avatar
Patrick von Platen committed
716
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
717

Patrick von Platen's avatar
Patrick von Platen committed
718
719
720
721
722
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
723

Patrick von Platen's avatar
Patrick von Platen committed
724
            pipe.fuse_lora()
725

Patrick von Platen's avatar
Patrick von Platen committed
726
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
727

Patrick von Platen's avatar
Patrick von Platen committed
728
            pipe.unfuse_lora()
729

Patrick von Platen's avatar
Patrick von Platen committed
730
731
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            # unloading should remove the LoRA layers
732
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
733
                self.check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers"
734
            )
Patrick von Platen's avatar
Patrick von Platen committed
735
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers")
736

Patrick von Platen's avatar
Patrick von Platen committed
737
738
739
740
741
742
743
744
745
746
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                )

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
                np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
747
748
749
750
751
752

    def test_simple_inference_with_text_unet_multi_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
753
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
754
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
755
756
757
758
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
759

Patrick von Platen's avatar
Patrick von Platen committed
760
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
761

Patrick von Platen's avatar
Patrick von Platen committed
762
763
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
764

Patrick von Platen's avatar
Patrick von Platen committed
765
766
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
767
768

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
769
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
770
            )
Patrick von Platen's avatar
Patrick von Platen committed
771
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
772

Patrick von Platen's avatar
Patrick von Platen committed
773
774
775
776
777
778
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
779

Patrick von Platen's avatar
Patrick von Platen committed
780
            pipe.set_adapters("adapter-1")
781

Patrick von Platen's avatar
Patrick von Platen committed
782
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
783

Patrick von Platen's avatar
Patrick von Platen committed
784
785
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
786

Patrick von Platen's avatar
Patrick von Platen committed
787
            pipe.set_adapters(["adapter-1", "adapter-2"])
788

Patrick von Platen's avatar
Patrick von Platen committed
789
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
790

Patrick von Platen's avatar
Patrick von Platen committed
791
792
793
794
795
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
796

Patrick von Platen's avatar
Patrick von Platen committed
797
798
799
800
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
801

Patrick von Platen's avatar
Patrick von Platen committed
802
803
804
805
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
806

Patrick von Platen's avatar
Patrick von Platen committed
807
            pipe.disable_lora()
808

Patrick von Platen's avatar
Patrick von Platen committed
809
810
811
812
813
814
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
815

816
817
818
819
820
821
    def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
822
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

906
907
908
909
910
    def test_simple_inference_with_text_unet_multi_adapter_weighted(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
911
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
912
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
913
914
915
916
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
917

Patrick von Platen's avatar
Patrick von Platen committed
918
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
919

Patrick von Platen's avatar
Patrick von Platen committed
920
921
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
922

Patrick von Platen's avatar
Patrick von Platen committed
923
924
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
925
926

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
927
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
928
            )
Patrick von Platen's avatar
Patrick von Platen committed
929
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
930

Patrick von Platen's avatar
Patrick von Platen committed
931
932
933
934
935
936
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
937

Patrick von Platen's avatar
Patrick von Platen committed
938
            pipe.set_adapters("adapter-1")
939

Patrick von Platen's avatar
Patrick von Platen committed
940
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
941

Patrick von Platen's avatar
Patrick von Platen committed
942
943
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
944

Patrick von Platen's avatar
Patrick von Platen committed
945
            pipe.set_adapters(["adapter-1", "adapter-2"])
946

Patrick von Platen's avatar
Patrick von Platen committed
947
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
948

Patrick von Platen's avatar
Patrick von Platen committed
949
950
951
952
953
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
954

Patrick von Platen's avatar
Patrick von Platen committed
955
956
957
958
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
959

Patrick von Platen's avatar
Patrick von Platen committed
960
961
962
963
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
964

Patrick von Platen's avatar
Patrick von Platen committed
965
966
            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images
967

Patrick von Platen's avatar
Patrick von Platen committed
968
969
970
971
            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )
972

Patrick von Platen's avatar
Patrick von Platen committed
973
            pipe.disable_lora()
974

Patrick von Platen's avatar
Patrick von Platen committed
975
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images
976

Patrick von Platen's avatar
Patrick von Platen committed
977
978
979
980
            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
981

Patrick von Platen's avatar
Patrick von Platen committed
982
983
    def test_lora_fuse_nan(self):
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
984
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
985
986
987
988
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
989

Patrick von Platen's avatar
Patrick von Platen committed
990
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
991

Patrick von Platen's avatar
Patrick von Platen committed
992
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
993

Patrick von Platen's avatar
Patrick von Platen committed
994
995
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
996
            )
Patrick von Platen's avatar
Patrick von Platen committed
997
998
999
1000
1001
1002
1003
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
                pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float(
                    "inf"
                )
1004

Patrick von Platen's avatar
Patrick von Platen committed
1005
1006
1007
            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(safe_fusing=True)
1008

Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
            # without we should not see an error, but every image will be black
            pipe.fuse_lora(safe_fusing=False)
1011

Patrick von Platen's avatar
Patrick von Platen committed
1012
            out = pipe("test", num_inference_steps=2, output_type="np").images
1013

Patrick von Platen's avatar
Patrick von Platen committed
1014
            self.assertTrue(np.isnan(out).all())
1015
1016
1017
1018
1019
1020

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1021
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
1022
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
1023
1024
1025
1026
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1027

Patrick von Platen's avatar
Patrick von Platen committed
1028
1029
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1030

Patrick von Platen's avatar
Patrick von Platen committed
1031
1032
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])
1033

Patrick von Platen's avatar
Patrick von Platen committed
1034
1035
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1036

Patrick von Platen's avatar
Patrick von Platen committed
1037
1038
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])
1039

Patrick von Platen's avatar
Patrick von Platen committed
1040
1041
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])
1042
1043
1044
1045
1046
1047

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1048
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
1049
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
1050
1051
1052
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
1053

Patrick von Platen's avatar
Patrick von Platen committed
1054
1055
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1056

Patrick von Platen's avatar
Patrick von Platen committed
1057
1058
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]})
1059

Patrick von Platen's avatar
Patrick von Platen committed
1060
1061
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1062

Patrick von Platen's avatar
Patrick von Platen committed
1063
1064
1065
1066
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(
                adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]}
            )
1067

Patrick von Platen's avatar
Patrick von Platen committed
1068
1069
1070
1071
1072
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1073

Patrick von Platen's avatar
Patrick von Platen committed
1074
1075
1076
1077
1078
            pipe.unet.add_adapter(unet_lora_config, "adapter-3")
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1079

1080
1081
1082
1083
1084
1085
1086
    @require_peft_version_greater(peft_version="0.6.2")
    def test_simple_inference_with_text_lora_unet_fused_multi(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
1087
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")

            # Attach a second adapter
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
            ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1"])
            ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.fuse_lora(adapter_names=["adapter-1"])

            # Fusing should still keep the LoRA layers so outpout should remain the same
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3),
                "Fused lora should not change the output",
            )

            pipe.unfuse_lora()
            pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"])

            # Fusing should still keep the LoRA layers
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should not change the output",
            )

1142
1143
1144
1145
1146
1147
    @unittest.skip("This is failing for now - need to investigate")
    def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
1148
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
1149
            components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
Patrick von Platen's avatar
Patrick von Platen committed
1150
1151
1152
1153
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1154

Patrick von Platen's avatar
Patrick von Platen committed
1155
1156
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
1157
1158

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
1159
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1160
            )
Patrick von Platen's avatar
Patrick von Platen committed
1161
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
1162

Patrick von Platen's avatar
Patrick von Platen committed
1163
1164
1165
1166
1167
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
1168

Patrick von Platen's avatar
Patrick von Platen committed
1169
1170
1171
1172
1173
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

            if self.has_two_text_encoders:
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)
1174

Patrick von Platen's avatar
Patrick von Platen committed
1175
1176
            # Just makes sure it works..
            _ = pipe(**inputs, generator=torch.manual_seed(0)).images
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208


class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

1209
1210
1211
1212
1213
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
    @slow
    @require_torch_gpu
    def test_integration_move_lora_cpu(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
        pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in text encoder",
        )

        # We will offload the first adapter in CPU and check if the offloading
        # has been performed correctly
        pipe.set_lora_device(["adapter-1"], "cpu")

        for name, module in pipe.unet.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        for name, module in pipe.text_encoder.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1"], 0)

        for n, m in pipe.unet.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1", "adapter-2"], "cuda")

        for n, m in pipe.unet.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

    @slow
    @require_torch_gpu
    def test_integration_logits_with_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder 2",
        )

        prompt = "a red sks dog"

        images = pipe(
            prompt=prompt,
            num_inference_steps=15,
            cross_attention_kwargs={"scale": 0.5},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @slow
    @require_torch_gpu
    def test_integration_logits_no_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        prompt = "a red sks dog"

        images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images

        expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @nightly
    @require_torch_gpu
    def test_integration_logits_multi_adapter(self):
        path = "stabilityai/stable-diffusion-xl-base-1.0"
        lora_id = "CiroN2022/toy-face"

        pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in Unet",
        )

        prompt = "toy_face of a hacker with a hoodie"

        lora_scale = 0.9

        images = pipe(
            prompt=prompt,
            num_inference_steps=30,
            generator=torch.manual_seed(0),
            cross_attention_kwargs={"scale": lora_scale},
            output_type="np",
        ).images
        expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipe.set_adapters("pixel")

        prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        expected_slice_scale = np.array(
            [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
        )
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # multi-adapter inference
        pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": 1.0},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1388
        expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # Lora disabled
        pipe.disable_lora()
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1402
        expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))


class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }
1442

1443
1444
1445
1446
1447
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1448
1449
1450

@slow
@require_torch_gpu
1451
class LoraIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

1481
    def tearDown(self):
1482
        super().tearDown()
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
        gc.collect()
        torch.cuda.empty_cache()

    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_lycoris(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
        ).to(torch_device)
        lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
        lora_filename = "edgLycorisMugler-light.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_model_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_sequential_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_kohya_sd_v15_with_higher_dimensions(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/urushisato-lora"
        lora_filename = "urushisato_v15.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_unload_kohya_lora(self):
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
        release_memory(pipe)

    def test_load_unload_load_kohya_lora(self):
        # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
        # without introducing any side-effects. Even though the test uses a Kohya-style
        # LoRA, the underlying adapter handling mechanism is format-agnostic.
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))

        # make sure we can load a LoRA again after unloading and they don't have
        # any undesired effects.
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images_again = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
        release_memory(pipe)


@slow
@require_torch_gpu
1731
class LoraSDXLIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }

1768
    def tearDown(self):
1769
        super().tearDown()
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
        gc.collect()
        torch.cuda.empty_cache()

    def test_sdxl_0_9_lora_one(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
        lora_filename = "daiton-xl-lora-test.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_two(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
        lora_filename = "saijo.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_three(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
        lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])

        self.assertTrue(np.allclose(images, expected, atol=5e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora(self):
Dhruv Nair's avatar
Dhruv Nair committed
1831
        generator = torch.Generator("cpu").manual_seed(0)
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

Patrick von Platen's avatar
Patrick von Platen committed
1849
1850
1851
1852
1853
    def test_sdxl_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()

Dhruv Nair's avatar
Dhruv Nair committed
1854
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

        lora_model_id = "latent-consistency/lcm-lora-sdxl"

        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1871
1872
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

Dhruv Nair's avatar
Dhruv Nair committed
1883
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1899
1900
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png"
        )

Dhruv Nair's avatar
Dhruv Nair committed
1915
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "snowy mountain",
            generator=generator,
            image=init_image,
            strength=0.5,
            num_inference_steps=4,
            guidance_scale=0.5,
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1936
1937
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1938
1939
1940
1941
1942

        pipe.unload_lora_weights()

        release_memory(pipe)

1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
    def test_sdxl_1_0_lora_fusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        pipe.fuse_lora()
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()

        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        # This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion(self):
Dhruv Nair's avatar
Dhruv Nair committed
1970
        generator = torch.Generator("cpu").manual_seed(0)
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        pipe.enable_model_cpu_offload()

        images = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
1981
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
1982
        ).images
Dhruv Nair's avatar
Dhruv Nair committed
1983
        images_with_fusion = images.flatten()
1984
1985

        pipe.unfuse_lora()
Dhruv Nair's avatar
Dhruv Nair committed
1986
        generator = torch.Generator("cpu").manual_seed(0)
1987
        images = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
1988
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
1989
        ).images
Dhruv Nair's avatar
Dhruv Nair committed
1990
        images_without_fusion = images.flatten()
1991

Dhruv Nair's avatar
Dhruv Nair committed
1992
1993
1994
        max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
        assert max_diff < 1e-4

1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion_effectivity(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        original_image_slice = images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        _ = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        pipe.unfuse_lora()

        # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
        pipe.unload_lora_weights()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora_fusion_efficiency(self):
        generator = torch.Generator().manual_seed(0)
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

Dhruv Nair's avatar
Dhruv Nair committed
2036
2037
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
        pipe.enable_model_cpu_offload()

        start_time = time.time()
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_non_fusion = end_time - start_time

        del pipe

Dhruv Nair's avatar
Dhruv Nair committed
2050
2051
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
2052
        pipe.fuse_lora()
Dhruv Nair's avatar
Dhruv Nair committed
2053

2054
2055
2056
2057
2058
2059
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
Dhruv Nair's avatar
Dhruv Nair committed
2060
        start_time = time.time()
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_fusion = end_time - start_time

        self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
        release_memory(pipe)

    def test_sdxl_1_0_last_ben(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "TheLastBen/Papercut_SDXL"
        lora_filename = "papercut.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_fuse_unfuse_all(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        unet_sd = copy.deepcopy(pipe.unet.state_dict())

        pipe.load_lora_weights(
            "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
        )

        fused_te_state_dict = pipe.text_encoder.state_dict()
        fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
        unet_state_dict = pipe.unet.state_dict()

2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
        peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0")

        def remap_key(key, sd):
            # some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly
            if (key in sd) or (not peft_ge_070):
                return key

            # instead of linear.weight, we now have linear.base_layer.weight, etc.
            if key.endswith(".weight"):
                key = key[:-7] + ".base_layer.weight"
            elif key.endswith(".bias"):
                key = key[:-5] + ".base_layer.bias"
            return key

2116
        for key, value in text_encoder_1_sd.items():
2117
            key = remap_key(key, fused_te_state_dict)
2118
2119
2120
            self.assertTrue(torch.allclose(fused_te_state_dict[key], value))

        for key, value in text_encoder_2_sd.items():
2121
            key = remap_key(key, fused_te_2_state_dict)
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
            self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))

        for key, value in unet_state_dict.items():
            self.assertTrue(torch.allclose(unet_state_dict[key], value))

        pipe.fuse_lora()
        pipe.unload_lora_weights()

        assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
        assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
        assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
        release_memory(pipe)
        del unet_sd, text_encoder_1_sd, text_encoder_2_sd

    def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
    def test_sd_load_civitai_empty_network_alpha(self):
        """
        This test simply checks that loading a LoRA with an empty network alpha works fine
        See: https://github.com/huggingface/diffusers/issues/5606
        """
        pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda")
        pipeline.enable_sequential_cpu_offload()
        civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
        pipeline.load_lora_weights(civitai_path, adapter_name="ahri")

        images = pipeline(
            "ahri, masterpiece, league of legends",
            output_type="np",
            generator=torch.manual_seed(156),
            num_inference_steps=5,
        ).images
        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipeline)

2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
    def test_canny_lora(self):
        controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
        )
        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
        pipe.enable_sequential_cpu_offload()

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "corgi"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

        assert images[0].shape == (768, 512, 3)

        original_image = images[0, -3:, -3:, -1].flatten()
        expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
        assert np.allclose(original_image, expected_image, atol=1e-04)
        release_memory(pipe)

    @nightly
    def test_sequential_fuse_unfuse(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)

        # 1. round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice = images[0, -3:, -3:, -1].flatten()

        pipe.unfuse_lora()

        # 2. round
        pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 3. round
        pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 4. back to 1st round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images_2 = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice_2 = images_2[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3))
        release_memory(pipe)